专有协议
❶ 哪位好心人能给我介绍一下cisco专有的技术和协议什么的,跪求~~
网络/路由 (Network/Routing)
CGMP:思科组管理协议 (CGMP:Cisco Group Management Protocol)
EIGRP:增强的内部网关路由选择协议 (EIGRP:Enhanced Interior Gateway Routing Protocol)
IGRP:内部网关路由协议 (IGRP:Interior Gateway Routing Protocol)
HSRP:热备份路由器协议 (HSRP:Hot Standby Routing Protocol)
RGMP:Cisco Router Port Group Management Protocol
CGMP:思科组管理协议 (CGMP:Cisco Group Management Protocol)
思科组管理协议 CGMP 主要用来限定只向与 IP 组播客户机相连的端口转发 IP 组播数据包。这些客户机自动加入和离开接收 IP 组播流量的组,交换机根据请求动态改变其转发行为。CGMP 主要提供以下服务:
允许 IP 组播数据包被交换到具有 IP 组播客户机的那些端口。
将网络带宽保存在用户字段,不致于转播不必要的IP组播流量。
不需要改变终端主机系统。
在为交换网络中的每个组播组创建独立 VLAN 时不会产生额外开销。
一旦 CGMP 被激活使用,它能自动识别与 CGMP-Capable 路由器连接的端口。CGMP 通过缺省方式被激活,它支持最大为64的 IP 组播组注册。支持 CGMP 的组播路由器周期性地相发送 CGMP 加入信息(Join Messages),用来通告自己执行网络交换行为。接收交换机保存信息,并设置一个类似于路由器保持时间(Holdtime)的定时器(Timer)。交换机每接收一个 CGMP 加入信息,定时器也随其不断更新。当路由器保持时间终止时,交换机负责将所有知道的组播组移出 CGMP。
CGMP 结合 IGMP 信息共同实现动态分配 Cisco Catalyst 交换机端口过程,从而 IP 组播流量只被转发给与 IP 组播客户机相连的那些端口。由于 CGMP-Capable IP 组播路由器看到所有 IGMP 数据包,因此它可以通知交换机特定主机什么时候加入或离开 IP 组播组。当 CGMP-Capable 路由器接收一个 IGMP 控制数据包时,它会创建一个包含请求类型(加入或离开)、组播组地址和主机有效 MAC 地址等的 CGMP 数据包。然后路由器将 CGMP 数据包发送到所有 Catalyst 交换机都知道的地址上。当交换机接收 CGMP 数据包时,交换机负责转换数据包同时更改组播组的转发行为。至此,该组播流量只被发送到与适当 IP 组播客户机相连的那些端口。该过程是自动实现的,无需用户参与。
EIGRP:增强的内部网关路由选择协议(EIGRP:Enhanced Interior Gateway Routing Protocol)
增强的内部网关路由选择协议 EIGRP 是增强版的 IGRP 协议。IGRP 是思科提供的一种用于 TCP/IP 和 OSI 英特网服务的内部网关路由选择协议。它被视为是一种内部网关协议,而作为域内路由选择的一种外部网关协议,它还没有得到普遍应用。
Enhanced IGRP 与其它路由选择协议之间主要区别包括:收敛宽速(Fast Convergence)、支持变长子网掩模(Subnet Mask)、局部更新和多网络层协议。执行 Enhanced IGRP 的路由器存储了所有其相邻路由表,以便于它能快速利用各种选择路径(Alternate Routes)。如果没有合适路径,Enhanced IGRP 查询其邻居以获取所需路径。直到找到合适路径,Enhanced IGRP 查询才会终止,否则一直持续下去。
EIGRP 协议对所有的 EIGRP 路由进行任意掩码长度的路由聚合,从而减少路由信息传输,节省带宽。另外 EIGRP 协议可以通过配置,在任意接口的位边界路由器上支持路由聚合。
Enhanced IGRP 不作周期性更新。取而代之,当路径度量标准改变时,Enhanced IGRP 只发送局部更新(Partial Updates)信息。局部更新信息的传输自动受到限制,从而使得只有那些需要信息的路由器才会更新。基于以上这两种性能,因此 Enhanced IGRP 损耗的带宽比 IGRP 少得多。
IGRP:内部网关路由协议(IGRP:Interior Gateway Routing Protocol)
内部网关路由协议(IGRP)是一种在自治系统(AS:autonomous system)中提供路由选择功能的路由协议。在上世纪80年代中期,最常用的内部路由协是路由信息协议(RIP)。尽管 RIP 对于实现小型或中型同机种互联网络的路由选择是非常有用的,但是随着网络的不断发展,其受到的限制也越加明显。思科路由器的实用性和 IGRP 的强大功能性,使得众多小型互联网络组织采用 IGRP 取代了 RIP。早在上世纪90年代,思科就推出了增强的 IGRP,进一步提高了 IGRP 的操作效率。
IGRP 是一种距离向量(Distance Vector)内部网关协议(IGP)。距离向量路由选择协议采用数学上的距离标准计算路径大小,该标准就是距离向量。距离向量路由选择协议通常与链路状态路由选择协议(Link-State Routing Protocols)相对,这主要在于:距离向量路由选择协议是对互联网中的所有节点发送本地连接信息。
为具有更大的灵活性,IGRP 支持多路径路由选择服务。在循环(Round Robin)方式下,两条同等带宽线路能运行单通信流,如果其中一根线路传输失败,系统会自动切换到另一根线路上。多路径可以是具有不同标准但仍然奏效的多路径线路。例如,一条线路比另一条线路优先3倍(即标准低3级),那么意味着这条路径可以使用3次。 只有符合某特定最佳路径范围或在差量范围之内的路径才可以用作多路径。差量(Variance)是网络管理员可以设定的另一个值。
HSRP:热备份路由器协议(HSRP:Hot Standby Router Protocol)
热备份路由器协议(HSRP)的设计目标是支持特定情况下 IP 流量失败转移不会引起混乱、并允许主机使用单路由器,以及即使在实际第一跳路由器使用失败的情形下仍能维护路由器间的连通性。换句话说,当源主机不能动态知道第一跳路由器的 IP 地址时,HSRP 协议能够保护第一跳路由器不出故障。该协议中含有多种路由器,对应一个虚拟路由器。HSRP 协议只支持一个路由器代表虚拟路由器实现数据包转发过程。终端主机将它们各自的数据包转发到该虚拟路由器上。
负责转发数据包的路由器称之为主动路由器(Active Router)。一旦主动路由器出现故障,HSRP 将激活备份路由器(Standby Routers)取代主动路由器。HSRP 协议提供了一种决定使用主动路由器还是备份路由器的机制,并指定一个虚拟的 IP 地址作为网络系统的缺省网关地址。如果主动路由器出现故障,备份路由器(Standby Routers)承接主动路由器的所有任务,并且不会导致主机连通中断现象。
HSRP 运行在 UDP 上,采用端口号1985。路由器转发协议数据包的源地址使用的是实际 IP 地址,而并非虚拟地址,正是基于这一点,HSRP 路由器间能相互识别。
RGMP:思科路由器端口组管理协议(RGMP:Cisco Router Port Group Management Protocol)
思科路由器端口组管理协议(RGMP)弥补了 Internet 组管理协议(IGMP:Internet Group Management Protocol)在 Snooping 技术机制上所存在的不足。RGMP 协议作用于组播路由器和交换机之间。通过 RGMP,可以将交换机中转发的组播数据包固定在所需要的路由器中。RGMP 的设计目标是应用于具有多种路由器相连的骨干交换网(Backbone Switched Networks)。
IGMP Snooping 技术的局限性主要体现在:该技术只能将组播流量固定在接收机间经过其它交换机直接或间接相连的交换端口,在 IGMP Snooping 技术下,组播流量不能固定在至少与一台组播路由器相连的端口处,从而引起这些端口的组播流量扩散。IGMP Snooping 是机制固有的局限性。基于此,路由器无法报告流量状态,所以交换机只能知道主机请求的组播流量类型,而不知道路由器端口接收的流量类型。
RGMP 协议支持将组播流量固定在路由器端口。为高效实现流量固定,要求网络交换机和路由器都必须支持 RGMP 。通过 RGMP,骨干交换机可以知道每个端口需要的组类型,然后组播路由器将该信息传送给交换机。但是路由器只发送 RGMP 信息,而忽视了所接收的 RGMP 信息。当组不再需要接收通信流量时,路由器会发送一个 RGMP 离开信息(Leave Message)。RGMP 协议中网络交换机需要消耗网络端口达到 RGMP 信息并对其进行处理操作。此外,RGMP 中的交换机不允许将接收到的 RGMP 信息转发/扩散到其它网络端口。
RGMP 的设计目标是与支持分配树 Join/Prune 的组播路由选择协议相结合使用。其典型协议为 PIM-SM。RGMP 协议只规定了 IP v4 组播路由选择操作,而不包括 IP v6。
#2 思科数据链路协议
数据链路 (Data Link)
CDP:思科发现协议 (CDP:Cisco Discovery Protocol)
DTP:思科动态中继协议 (DTP:Dynamic Trunk Protocol)
ISL & DISL:思科交换链路内协议和动态 ISL 协议 (ISL:Inter-Switch Link Protocol)
VTP:思科VLAN中继协议 (VTP:VLAN Trunking Protocol)
CDP:思科发现协议(CDP:Cisco Discovery Protocol)
思科发现协议 CDP 基本上是用来获取相邻设备的协议地址以及发现这些设备的平台。CDP 也可为路由器的使用提供相关接口信息。CDP 是一种独立媒体协议,运行在所有思科本身制造的设备上,包括路由器、网桥、接入服务器和交换机。
SNMP 中结合使用 CDP 管理信息基础 MIB,能使网络管理应用获知设备类型和相邻设备的 SNMP 代理地址,并向这些设备发送 SNMP 查询请求。Cisco 发现协议支持 CISCO-CDP-MIB。
CDP 运行在所有的媒体上,从而支持子网访问协议 SNAP,包括局域网、帧中继和异步传输模式 ATM 物理媒体。CDP 只运行于数据链路层,因此,支持不同网络层协议的两个系统彼此相互了解。
CDP 配置的每台设备发送周期性信息,如我们所知的广告到组播地址。每台设备至少广告一个地址,在该地址下,它可以接收 SNMP 信息。广告包括生存期,或保持时间等信息,这些信息指出了在取消之前接收设备应该保持 CDP 信息的时间长短。此外每台设备还要注意其它设备发出的周期性 CDP 信息,从中了解相邻设备信息并决定那些设备的媒体接口什么时候增长或降低。
CDP 版本2,是目前该协议使用最普遍的版本,它具有更高的智能设备跟踪等性能。支持该性能的报告机制,提供快速差错跟踪功能,有利于缩短停机时间(Downtime)。报告差错信息可以发送到控制台或日志服务器(Logging Server),这些差错信息包括连接端口上不匹配(Unmatching)的本地 VLAN IDs(IEEE 802.1Q)以及连接设备间不匹配的端口双向状态。
DTP:思科动态中继协议(DTP:Cisco Dynamic Trunking Protocol)
思科动态中继协议 DTP,是 VLAN 组中思科所有协议,主要用于协商两台设备间链路上的中继过程以及中继封装 802.1Q 类型。
中继协议有很多不同类型。如果端口被设置为 Trunk 端口,那么该端口便具有自动中继功能,在某些情况下,甚至具有协商端口中继类型的功能。这种与其它设备之间进行的协商中继方法的过程被称之为动态中继技术。
首先关注的是,中继电缆(Trunk Cable)终端最好对它们正在中继或它们将中继帧视为正常帧问题达成一致。在信息帧头另外添加标签信息容易导致终端站的混乱,这是因为终端站的驱动栈无法识别该标签信息,从而导致终端系统上锁或失败。为解决这个问题,思科创建了交换协议以实现通信目的。 推出的第一版本是 VTP,即 VLAN 中继协议,它与 ISL 共同作用。最新推出的版本,即动态中继协议 DTP 与 802.1Q 共同作用。
其次是创建 LANs。交换机要想实现独立配置 VLANs 交换,需要做很多工作并且容易引起较多矛盾,这是因为 VLAN 100 运行在一台交换机上,计费却在另一台上。这很容易破坏机器的 VLAN 安全模式,而故障恢复机制正是为此而设立的。此外也可通过 VTP/DTP 解决该问题。同一管理控制台可以在某台交换机上创建或删除一个 VTP,并使信息自动传播到交换机组上,这种交换机组可能是一个 VTP 域。
ISL & DISL:思科交换链路内协议和动态 ISL 协议(ISL & DISL:Cisco Inter-Switch Link Protocol and Dynamic ISL Protocol)
交换链路内协议(ISL),是思科私有协议,主要用于维护交换机和路由器间的通信流量等 VLAN 信息。
ISL 标签(Tagging)能与 802.1Q 干线执行相同任务,只是所采用的帧格式不同。ISL 干线(Trunks)是 Cisco 私有,即指两设备间(如交换机)的一条点对点连接线路。在“交换链路内协议”名称中即包含了这层含义。ISL 帧标签采用一种低延迟(Low-Latency)机制为单个物理路径上的多 VLANs 流量提供复用技术。ISL 主要用于实现交换机、路由器以及各节点(如服务器所使用的网络接口卡)之间的连接操作。为支持 ISL 功能特征,每台连接设备都必须采用 ISL 配置。ISL 所配置的路由器支持 VLAN 内通信服务。非 ISL 配置的设备,则用于接收由 ISL 封装的以太帧(Ethernet Frames),通常情况下,非 ISL 配置的设备将这些接收的帧及其大小归因于协议差错。
和 802.1Q 一样,ISL 作用于 OSI 模型第2层。所不同的是,ISL 协议头和协议尾封装了整个第2层的以太帧。正因为此,ISL 被认为是一种能在交换机间传送第2层任何类型的帧或上层协议的独立协议。ISL 所封装的帧可以是令牌环(Token Ring)或快速以太网(Fast Ethernet),它们在发送端和接收端之间维持不变地实现传送。ISL 具有以下特征:
由专用集成电路执行(ASIC:application-specific integrated circuits)
不干涉客户机站;客户机不会看到 ISL 协议头
ISL NICs 为交换机与交换机、路由器与交换机、交换机与服务器等之间的运行提供高效性能。
动态交换链路内协议(DISL),也属于思科协议。它简化了两台相互连接的快速以太网设备上 ISL 干线的创建过程。快速以太信道技术为高性能中枢连接提供了两个全双工快速以太网链路是集中性。由于 DISL 中只允许将一个链路终端配置为干线,所以 DISL 实现了最小化 VLAN 干线。
VTP:思科VLAN中继协议(VTP:Cisco VLAN Trunking Protocol)
VLAN 中继协议(VTP)是思科第2层信息传送协议,主要控制网络范围内 VLANs 的添加、删除和重命名。VTP 减少了交换网络中的管理事务。当用户要为 VTP 服务器配置新 VLAN 时,可以通过域内所有交换机分配 VLAN,这样可以避免到处配置相同的 VLAN。VTP 是思科私有协议,它支持大多数的 Cisco Catalyst 系列产品。
通过 VTP,其域内的所有交换机都清楚所有的 VLANs 情况,但当 VTP 可以建立多余流量时情况例外。这时,所有未知的单播(Unicasts)和广播在整个 VLAN 内进行扩散,使得网络中的所有交换机接收到所有广播,即使 VLAN 中没有连接用户,情况也不例外。而 VTP Pruning 技术正可以消除该多余流量。
缺省方式下,所有Cisco Catalyst交换机都被配置为 VTP 服务器。这种情形适用于 VLAN 信息量小且易存储于任意交换机(NVRAM)上的小型网络。对于大型网络,由于每台交换机都会进行 NVRAM 存储操作,但该操作对于某些点是多余的,所以在这些点必须设置一个“判决呼叫”(Judgment Call)。基于此,网络管理员所使用的 VTP 服务器应该采用配置较好的交换机,其它交换机则作为客户机使用。此外需要有某些 VTP 服务器能提供网络所需的一定量的冗余。
到目前为止,VTP 具有三种版本。其中 VTP v2 与 VTP v1 区别不大,主要不同在于:VTP v2 支持令牌环 VLANs,而 VTP v1 不支持。通常只有在使用 Token Ring VLANs 时,才会使用到 VTP v2,否则一般情况下并不使用 VTP v2。
VTPv3 不能直接处理 VLANs 事务,它只负责管理域(Administrative Domain)内不透明数据库的分配任务。与前两版相比,VTP v3 具有以下改进:
支持扩展 VLANs。
支持专用 VLANs 的创建和广告。
提供服务器认证性能。
避免“错误”数据库进入 VTP 域。
与 VTP v1 和 VTP v2 交互作用。
支持每端口(On a Per-Port Basis)配置。
支持传播VLAN数据库和其它数据库类型。
#3 思科网络安全技术协议
网络安全技术 (Security/VPN)
L2F:Layer 2 Forwarding Protocol
TACACS:终端访问控制器访问控制系统 (TACACS:Terminal Access Controller Access Control System)
L2F:第二层转发协议(L2F: Level 2 Forwarding protocol)
第二层转发协议(L2F)是一种用来建立跨越公用结构组织(如因特网)的安全隧道,为企业家庭通路连接一个 ISP POP 的协议。这个隧道建立了一个用户与企业客户网路间的虚拟点对点连接。
第二层转发协议(L2F)允许链路层协议隧道技术。使用这样的隧道,使得分离原始拨号服务器位置即拨号协议连接终止的位置与提供的网络访问的位置成为可能。
L2F 允许在 L2F 中封装 PPP/SLIP 包。ISP NAS 与家庭通路都需要请求一种常规封装协议,所以可以成功地传输或接收 SLIP/PPP 包。
相关链接 GRE、PPP、L2TP、PPTP、SLIP
组织来源 L2F 由 Cisco 定义。
相关链接 http://www.javvin.com/protocol/rfc2341.pdf:Cisco Layer Two Forwarding (Protocol) — “L2F”
TACACS:终端访问控制器访问控制系统(TACACS & TACACS+:Terminal Access Controller Access Control System)
终端访问控制器访问控制系统(TACACS)通过一个或多个中心服务器为路由器、网络访问控制器以及其它网络处理设备提供了访问控制服务。TACACS 支持独立的认证(Authentication)、授权(Authorization)和计费(Accounting)功能。
TACACS 允许客户机拥有自己的用户名和口令,并发送查询指令到 TACACS 认证服务器(又称之为TACACS Daemon 或 TACACSD)。通常情况下,该服务器运行在主机程序上。主机返回一个关于接收/拒绝请求的响应,然后根据响应类型,判断 TIP 是否允许访问。在上述过程中,判断处理采取“公开化(Opened Up)”并且对应的算法和数据取决于 TACACS Daemon 运行的对象。此外 TACACS 扩展协议支持更多类型的认证请求和响应代码。
当前 TACACS 具有三种版本,其中第三版 TACACS+ 与前两版不兼容。
#4 思科其他协议
SCCP:信令连接控制协议(SCCP:Skinny Client Control Protocol)
信令连接控制协议 SCCP 是用于思科呼叫管理及其 VOIP 电话之间的思科专有协议。其他供应商也支持该协议。
为解决 VOIP 问题,要求 LAN 或者基于 IP 的 PBX 的终点站操作简单,常见且相对便宜。相对于 H.323 推荐的相当昂贵的系统而言,SCCP 定义了一个简单且易于使用的结构。通过 SCCP,H.323 代理可以与 Skinny 客户机进行通信。在这样的情况下,电话充当了 IP 上的 Skinny 客户机。而代理服务主要用于 H.225 和 H.245 信令。
关于 SCCP 结构,作为 Cisco 呼叫管理的 H.323 代理服务器中存在大量的 H.323 处理源。终点站(电话)运行的客户机,该客户机只需消耗少量处理开销,客户机通过面向连接(基于 TCP/IP)的通信方式实现呼叫管理间的通信过程,从而与另一个适应的 H.323 终点站建立一个呼叫连接。一旦这样的呼叫连接建立起来,那么两个 H.323 终点站就可以通过无连接(基于 UDP/IP)通信方式实现音频传输。这样,通过限制建立呼叫管理的 H.323 呼叫装备的复杂性、以及为实际音频通信出入终点站提供 Skinny 协议来降低整个过程的费用和开销。
XOT:基于 TCP 协议的 Cisco X.25(XOT:X.25 over TCP Protocol by Cisco)
基于 TCP 协议的 Cisco X.25(XOT)是由思科开发的一种用于在 IP 英特网上实现 X.25 传输的协议。X.25 数据包层通常采用 LAPB,并且要求在其本身下面包含一个可靠的链路层。XOT 提供了一种在 IP 英特网上发送 X.25 数据包的方法,即将 X.25 数据包层封装在 TCP 数据包中。
TCP 具有一个可靠字节流。X.25 中要求其下面的层,特别是数据包间的边界包含信息语义。为了达到这个目标,要求 TCP 和 X.25 间的 XOT 协议头较小(大约4字节)。XOT 协议头包含一个长字段,用以分隔 TCP 流中的 X.25 数据包。
标准 X.25 协议数据包格式和状态转换规则通常应用于 XOT 中的 X.25 层。应注意例外情形。
就这么几个协议要说是cisco用到的就差的多了。
就cisco用到的协议
路由协议起码还有的RIP OSPF ISIS EGP BGP MP-BGP ODR
组播方面交换机的几个差不多,
路由器上DVMRP PIM-SM/DM/SDM Bidr PIM SSM PGM MSDP anycast
2层(E文是data link)的协议HDLC PPP FR ATM LAPD等等
安全方面radius是和TACACS+同类的协议,不过后者是cisco 私有
L2F还真是第一次看到,我怀疑现在cisco改叫法了,可能是L2TP或PPTP其中之一吧。
其他安全tunnel的协议主要是GRE,以及最常见的IP-Sec 2层的802.1x
QOS就一大片了,队列就FIFO WFQ PQ CQ CBWFQ LLQ WRR MDRR WRED 等
其他的RSVP CAR FRTS GTS DTS CBTS RTP NBAR等
SCCP是语音方面的协议
H323 MGCP SIP RAS和SCCP这些算是网关信令协议
语音压缩编码的G711 G723 G729等等,就我听说过的起码还有15种+
我也懒得分类说了,常见像telnet NAT这些常见的也不写了。其他还有
SNMP RMON CBAC CEF SPAN MPLS GLBP NTP kerberos MLS B8ZS DLSW SDH/PDH APS SMDS IRDP等等等等。。。
而且上面一些协议里面其实还包括好多协议
比如ATM就起码还包括IISP PNNI LANE ILMI NHRP SCSP SSCOP SSRP Q2931 MPOA PLCP……
而这些是我现在能想到的,想不到的还有不少,而我还不了解的则更多了。。。
❷ 专有技术合作保密协议
作为本人承办的专有技术知识产权案件,我方当事人作为专有技术的拥有者,通过该份《专有技术合作保密协议》的约定,在许可人违约的情况下,及时向法院提请民事诉讼,协助当事人获得近30万元的赔偿。本合作协议,因涉及当事人的一些具体内容,做了很大一部分删节,但仍不失为一份较好的专利许可格式协议,对于知识产权利益方特别是知识产权的拥有者,不妨通过本协议的约定,实现自身利益的最大化。
❸ 思科专有的协议有哪些
我现在一下子能想起来的
二层 isl
hsrp,eigrp
差不多常用的吧
❹ rspan是否属于思科专有协议
rspan,跨交换机进行流量捕获,哪个厂商都有这样的技术了,配置命令不同而已,一个厂商一个实现方式,没有一个公有化的协议标准。非说是私有的也没毛病,只是工作内容大家都能干罢了。
❺ 华为专有协议有哪些
私有协议吧?
HGMP,还有其他的可能不是非常通用的,比如动态QinQ。
❻ 什么是专有协议
就是为他制定协议
❼ 常见的网络协议有哪些
第一章 概述
电信网、计算机网和有线电视网 三网合一
TCP/IP是当前的因特网协议簇的总称,TCP和 IP是其中的两个最重要的协议。
RFC标准轨迹由3个成熟级构成:提案标准、草案标准和标准。
第二章 计算机网络与因特网体系结构
根据拓扑结构:计算机网络可以分为总线型网、环型网、星型网和格状网。
根据覆盖范围:计算机网络可以分为广域网、城域网、局域网和个域网。
网络可以划分成:资源子网和通信子网两个部分。
网络协议是通信双方共同遵守的规则和约定的集合。网络协议包括三个要素,即语法、语义和同步规则。
通信双方对等层中完成相同协议功能的实体称为对等实体 ,对等实体按协议进行通信。
有线接入技术分为铜线接入、光纤接入和混合光纤同轴接入技术。
无线接入技术主要有卫星接入技术、无线本地环路接入和本地多点分配业务。
网关实现不同网络协议之间的转换。
因特网采用了网络级互联技术,网络级的协议转换不仅增加了系统的灵活性,而且简化了网络互联设备。
因特网对用户隐藏了底层网络技术和结构,在用户看来,因特网是一个统一的网络。
因特网将任何一个能传输数据分组的通信系统都视为网络,这些网络受到网络协议的平等对待。
TCP/IP 协议分为 4 个协议层 :网络接口层、网络层、传输层和应用层。
IP 协议既是网络层的核心协议 ,也是 TCP/IP 协议簇中的核心协议。
第四章 地址解析
建立逻辑地址与物理地址之间 映射的方法 通常有静态映射和动态映射。动态映射是在需要获得地址映射关系时利用网络通信协议直接从其他主机上获得映射信息。 因特网采用了动态映射的方法进行地址映射。
获得逻辑地址与物理地址之间的映射关系称为地址解析 。
地址解析协议 ARP 是将逻辑地址( IP 地址)映射到物理地址的动态映射协议。
ARP 高速缓存中含有最近使用过的 IP 地址与物理地址的映射列表。
在 ARP 高速缓存中创建的静态表项是永不超时的地址映射表项。
反向地址解析协议 RARP 是将给定的物理地址映射到逻辑地址( IP地址)的动态映射。RARP需要有RARP 服务器帮助完成解析。
ARP请求和 RARP请求,都是采用本地物理网络广播实现的。
在代理ARP中,当主机请求对隐藏在路由器后面的子网中的某一主机 IP 地址进行解析时,代理 ARP路由器将用自己的物理地址作为解析结果进行响应。
第五章 IP协议
IP是不可靠的无连接数据报协议,提供尽力而为的传输服务。
TCP/IP 协议的网络层称为IP层.
IP数据报在经过路由器进行转发时一般要进行三个方面的处理:首部校验、路由选择、数据分片
IP层通过IP地址实现了物理地址的统一,通过IP数据报实现了物理数据帧的统一。 IP 层通过这两个方面的统一屏蔽了底层的差异,向上层提供了统一的服务。
IP 数据报由首部和数据两部分构成 。首部分为定长部分和变长部分。选项是数据报首部的变长部分。定长部分 20 字节,选项不超过40字节。
IP 数据报中首部长度以 32 位字为单位 ,数据报总长度以字节为单位,片偏移以 8 字节( 64 比特)为单位。数据报中的数据长度 =数据报总长度-首部长度× 4。
IP 协议支持动态分片 ,控制分片和重组的字段是标识、标志和片偏移, 影响分片的因素是网络的最大传输单元 MTU ,MTU 是物理网络帧可以封装的最大数据字节数。通常不同协议的物理网络具有不同的MTU 。分片的重组只能在信宿机进行。
生存时间TTL是 IP 数据报在网络上传输时可以生存的最大时间,每经过一个路由器,数据报的TTL值减 1。
IP数据报只对首部进行校验 ,不对数据进行校验。
IP选项用于网络控制和测试 ,重要包括严格源路由、宽松源路由、记录路由和时间戳。
IP协议的主要功能 包括封装 IP 数据报,对数据报进行分片和重组,处理数据环回、IP选项、校验码和TTL值,进行路由选择等。
在IP 数据报中与分片相关的字段是标识字段、标志字段和片偏移字段。
数据报标识是分片所属数据报的关键信息,是分片重组的依据
分片必须满足两个条件: 分片尽可能大,但必须能为帧所封装 ;片中数据的大小必须为 8 字节的整数倍 ,否则 IP 无法表达其偏移量。
分片可以在信源机或传输路径上的任何一台路由器上进行,而分片的重组只能在信宿机上进行片重组的控制主要根据 数据报首部中的标识、标志和片偏移字段
IP选项是IP数据报首部中的变长部分,用于网络控制和测试目的 (如源路由、记录路由、时间戳等 ),IP选项的最大长度 不能超过40字节。
1、IP 层不对数据进行校验。
原因:上层传输层是端到端的协议,进行端到端的校验比进行点到点的校验开销小得多,在通信线路较好的情况下尤其如此。另外,上层协议可以根据对于数据可靠性的要求, 选择进行校验或不进行校验,甚至可以考虑采用不同的校验方法,这给系统带来很大的灵活性。
2、IP协议对IP数据报首部进行校验。
原因: IP 首部属于 IP 层协议的内容,不可能由上层协议处理。
IP 首部中的部分字段在点到点的传递过程中是不断变化的,只能在每个中间点重新形成校验数据,在相邻点之间完成校验。
3、分片必须满足两个条件:
分片尽可能大,但必须能为帧所封装 ;
片中数据的大小必须为8字节的整数倍,否则IP无法表达其偏移量。
第六章 差错与控制报文协议(ICMP)
ICMP 协议是 IP 协议的补充,用于IP层的差错报告、拥塞控制、路径控制以及路由器或主机信息的获取。
ICMP既不向信宿报告差错,也不向中间的路由器报告差错,而是 向信源报告差错 。
ICMP与 IP协议位于同一个层次,但 ICMP报文被封装在IP数据报的数据部分进行传输。
ICMP 报文可以分为三大类:差错报告、控制报文和请求 /应答报文。
ICMP 差错报告分为三种 :信宿不可达报告、数据报超时报告和数据报参数错报告。数据报超时报告包括 TTL 超时和分片重组超时。
数据报参数错包括数据报首部中的某个字段的值有错和数据报首部中缺少某一选项所必须具有的部分参数。
ICMP控制报文包括源抑制报文和重定向报文。
拥塞是无连接传输时缺乏流量控制机制而带来的问题。ICMP 利用源抑制的方法进行拥塞控制 ,通过源抑制减缓信源发出数据报的速率。
源抑制包括三个阶段 :发现拥塞阶段、解决拥塞阶段和恢复阶段。
ICMP 重定向报文由位于同一网络的路由器发送给主机,完成对主机的路由表的刷新。
ICMP 回应请求与应答不仅可以被用来测试主机或路由器的可达性,还可以被用来测试 IP 协议的工作情况。
ICMP时间戳请求与应答报文用于设备间进行时钟同步 。
主机利用 ICMP 路由器请求和通告报文不仅可以获得默认路由器的 IP 地址,还可以知道路由器是否处于活动状态。
第七章 IP 路由
数据传递分为直接传递和间接传递 ,直接传递是指直接传到最终信宿的传输过程。间接传递是指在信
源和信宿位于不同物理网络时,所经过的一些中间传递过程。
TCP/IP 采用 表驱动的方式 进行路由选择。在每台主机和路由器中都有一个反映网络拓扑结构的路由表,主机和路由器能够根据 路由表 所反映的拓扑信息找到去往信宿机的正确路径。
通常路由表中的 信宿地址采用网络地址 。路径信息采用去往信宿的路径中的下一跳路由器的地址表示。
路由表中的两个特殊表目是特定主机路由和默认路由表目。
路由表的建立和刷新可以采用两种不同 的方式:静态路由和动态路由。
自治系统 是由独立管理机构所管理的一组网络和路由器组成的系统。
路由器自动获取路径信息的两种基本方法是向量—距离算法和链路 —状态算法。
1、向量 — 距离 (Vector-Distance,简称 V—D)算法的基本思想 :路由器周期性地向与它相邻的路由器广播路径刷新报文,报文的主要内容是一组从本路由器出发去往信宿网络的最短距离,在报文中一般用(V,D)序偶表示,这里的 V 代表向量,标识从该路由器可以到达的信宿 (网络或主机 ),D 代表距离,指出从该路由器去往信宿 V 的距离, 距离 D 按照去往信宿的跳数计。 各个路由器根据收到的 (V ,D)报文,按照最短路径优先原则对各自的路由表进行刷新。
向量 —距离算法的优点是简单,易于实现。
缺点是收敛速度慢和信息交换量较大。
2、链路 — 状态 (Link-Status,简称 L-S)算法的基本思想 :系统中的每个路由器通过从其他路由器获得的信息,构造出当前网络的拓扑结构,根据这一拓扑结构,并利用 Dijkstra 算法形成一棵以本路由器为根的最短路径优先树, 由于这棵树反映了从本节点出发去往各路由节点的最短路径, 所以本节点就可以根据这棵最短路径优先树形成路由表。
动态路由所使用的路由协议包括用于自治系统内部的 内部网关协 议和用于自治系统之间的外部网关协议。
RIP协议在基本的向量 —距离算法的基础上 ,增加了对路由环路、相同距离路径、失效路径以及慢收敛问题的处理。 RIP 协议以路径上的跳数作为该路径的距离。 RIP 规定,一条有效路径的距离不能超过
RIP不适合大型网络。
RIP报文被封装在 UDP 数据报中传输。RIP使用 UDP 的 520 端口号。
3、RIP 协议的三个要点
仅和相邻路由器交换信息。
交换的信息是当前本路由器所知道的全部信息,即自己的路由表。
按固定的时间间隔交换路由信息,例如,每隔30秒。
4、RIP 协议的优缺点
RIP 存在的一个问题是当网络出现故障时,要经过比较长的时间才能将此信息传送到所有的路由器。
RIP 协议最大的优点就是实现简单,开销较小。
RIP 限制了网络的规模,它能使用的最大距离为15(16表示不可达)。
路由器之间交换的路由信息是路由器中的完整路由表,因而随着网络规模的扩大,开销也就增加。
5、为了防止计数到无穷问题,可以采用以下三种技术。
1)水平 分割 法(Split Horizon) 水平分割法的基本思想:路由器从某个接口接收到的更新信息不允许再从这个接口发回去。在图 7-9 所示的例子中, R2 向 R1 发送 V-D 报文时,不能包含经过 R1 去往 NET1的路径。因为这一信息本身就是 R1 所产生的。
2) 保持法 (Hold Down) 保持法要求路由器在得知某网络不可到达后的一段时间内,保持此信息不变,这段时间称为保持时间,路由器在保持时间内不接受关于此网络的任何可达性信息。
3) 毒性逆转法 (Poison Reverse)毒性逆转法是水平分割法的一种变化。当从某一接口发出信息时,凡是从这一接口进来的信息改变了路由表表项的, V-D 报文中对应这些表目的距离值都设为无穷 (16)。
OSPF 将自治系统进一步划分为区域,每个区域由位于同一自治系统中的一组网络、主机和路由器构成。区域的划分不仅使得广播得到了更好的管理,而且使 OSPF能够支持大规模的网络。
OSPF是一个链路 —状态协议。当网络处于收敛状态时, 每个 OSPF路由器利用 Dijkstra 算法为每个网络和路由器计算最短路径,形成一棵以本路由器为根的最短路径优先 (SPF)树,并根据最短路径优先树构造路由表。
OSPF直接使用 IP。在IP首部的协议字段, OSPF协议的值为 89。
BGP 是采用路径 —向量算法的外部网关协议 , BGP 支持基于策略的路由,路由选择策略与政治、经济或安全等因素有关。
BGP 报文分为打开、更新、保持活动和通告 4 类。BGP 报文被封装在 TCP 段中传输,使用TCP的179 号端口 。
第八章 传输层协议
传输层承上启下,屏蔽通信子网的细节,向上提供通用的进程通信服务。传输层是对网络层的加强与弥补。 TCP 和 UDP 是传输层 的两大协议。
端口分配有两种基本的方式:全局端口分配和本地端口分配。
在因特网中采用一个 三元组 (协议,主机地址,端口号)来全局惟一地标识一个进程。用一个五元组(协议 ,本地主机地址 ,本地端口号 ,远地主机地址 ,远地端口号)来描述两个进程的关联。
TCP 和 UDP 都是提供进程通信能力的传输层协议。它们各有一套端口号,两套端口号相互独立,都是从0到 65535。
TCP 和 UDP 在计算校验和时引入伪首部的目的是为了能够验证数据是否传送到了正确的信宿端。
为了实现数据的可靠传输, TCP 在应用进程间 建立传输连接 。TCP 在建立连接时采用 三次握手方法解决重复连接的问题。在拆除连接时采用 四次握手 方法解决数据丢失问题。
建立连接前,服务器端首先被动打开其熟知的端口,对端口进行监听。当客户端要和服务器建立连接时,发出一个主动打开端口的请求,客户端一般使用临时端口。
TCP 采用的最基本的可靠性技术 包括流量控制、拥塞控制和差错控制。
TCP 采用 滑动窗口协议 实现流量控制,滑动窗口协议通过发送方窗口和接收方窗口的配合来完成传输控制。
TCP 的 拥塞控制 利用发送方的窗口来控制注入网络的数据流的速度。发送窗口的大小取通告窗口和拥塞窗口中小的一个。
TCP通过差错控制解决 数据的毁坏、重复、失序和丢失等问题。
UDP 在 IP 协议上增加了进程通信能力。此外 UDP 通过可选的校验和提供简单的差错控制。但UDP不提供流量控制和数据报确认 。
1、传输层( Transport Layer)的任务 是向用户提供可靠的、透明的端到端的数据传输,以及差错控制和流量控制机制。
2 “传输层提供应用进程间的逻辑通信 ”。“逻辑通信 ”的意思是:传输层之间的通信好像是沿水平方向传送数据。但事实上这两个传输层之间并没有一条水平方向的物理连接。
TCP 提供的可靠传输服务有如下五个特征 :
面向数据流 ; 虚电路连接 ; 有缓冲的传输 ; 无结构的数据流 ; 全双工连接 .
3、TCP 采用一种名为 “带重传功能的肯定确认 ( positive acknowledge with retransmission ) ”的技术作为提供可靠数据传输服务的基础。
第九章 域名系统
字符型的名字系统为用户提供了非常直观、便于理解和记忆的方法,非常符合用户的命名习惯。
因特网采用层次型命名机制 ,层次型命名机制将名字空间分成若干子空间,每个机构负责一个子空间的管理。 授权管理机构可以将其管理的子名字空间进一步划分, 授权给下一级机构管理。名字空间呈一种树形结构。
域名由圆点 “.”分开的标号序列构成 。若域名包含从树叶到树根的完整标号串并以圆点结束,则称该域名为完全合格域名FQDN。
常用的三块顶级域名 为通用顶级域名、国家代码顶级域名和反向域的顶级域名。
TCP/IP 的域名系统是一个有效的、可靠的、通用的、分布式的名字 —地址映射系统。区域是 DNS 服务器的管理单元,通常是指一个 DNS 服务器所管理的名字空间 。区域和域是不同的概念,域是一个完整的子树,而区域可以是子树中的任何一部分。
名字服务器的三种主要类型是 主名字服务器、次名字服务器和惟高速缓存名字服务器。主名字服务器拥有一个区域文件的原始版本,次名字服务器从主名字服务器那里获得区域文件的拷贝,次名字服务器通过区域传输同主名字服务器保持同步。
DNS 服务器和客户端属于 TCP/IP 模型的应用层, DNS 既可以使用 UDP,也可以使用 TCP 来进行通信。 DNS 服务器使用 UDP 和 TCP 的 53 号熟知端口。
DNS 服务器能够使用两种类型的解析: 递归解析和反复解析 。
DNS 响应报文中的回答部分、授权部分和附加信息部分由资源记录构成,资源记录存放在名字服务器的数据库中。
顶级域 cn 次级域 e.cn 子域 njust.e.cn 主机 sery.njust.e.cn
TFTP :普通文件传送协议( Trivial File Transfer Protocol )
RIP: 路由信息协议 (Routing Information Protocol)
OSPF 开放最短路径优先 (Open Shortest Path First)协议。
EGP 外部网关协议 (Exterior Gateway Protocol)
BGP 边界网关协议 (Border Gateway Protocol)
DHCP 动态主机配置协议( Dynamic Host Configuration Protocol)
Telnet工作原理 : 远程主机连接服务
FTP 文件传输工作原理 File Transfer Protocol
SMTP 邮件传输模型 Simple Message Transfer Protocol
HTTP 工作原理
❽ 自考专科有协议书编号吗
这个自考专科有协议书编号的都有账号的,你可以看一下查询一下证书
❾ 简述专项协议书的种类
《劳动合同法》第五十二条规定:企业职工一方与用人单位可以订立劳动安全卫生、女职工权益保护、工资调整机制等专项集体合同。这一规定对专项集体合同制度作了明确。专项集体合同是指用人单位与本单位职工根据法律、法规、规章的规定,就集体协商的某项内容签订的专项书面协议。专项集体合同涉及某一个侧面的问题,因而订立的时候就更有针对性,一般是针对某个劳动关系双方都关注的问题订立专项集体合同。该条规定对专项集体合同的种类作了列举,主要包括劳动安全卫生、女职工权益保护、工资调整机制等专项集体合同。专项集体合同的约束力和其他集体合同相比,也有其特点,即其所涉及的只是企业的一个方面,但却有可能对全体职工(如劳动安全卫生、工资调整机制等专项集体合同)有约束力,或是对部分职工(如女职工保护专项集体合同)有约束力。