當前位置:首頁 » 著名認證 » 著名函數

著名函數

發布時間: 2020-12-02 15:08:18

⑴ 數學經典有名的真實故事

4. 蘇步青的故事
蘇步青1902年9月出生在浙江省平陽縣的一個山村裡。雖然家境清貧,可他父母省吃儉用,拚死拼活也要供他上學。他在讀初中時,對數學並不感興趣,覺得數學太簡單,一學就懂。可量,後來的一堂數學課影響了他一生的道路。
那是蘇步青上初三時,他就讀浙江省六十中來了一位剛從東京留學歸來的教數學課的楊老師。第一堂課楊老師沒有講數學,而是講故事。他說:「當今世界,弱肉強食,世界列強依仗船堅炮利,都想蠶食瓜分中國。中華亡國滅種的危險迫在眉睫,振興科學,發展實業,救亡圖存,在此一舉。『天下興亡,匹夫有責』,在座的每一位同學都有責任。」他旁徵博引,講述了數學在現代科學技術發展中的巨大作用。這堂課的最後一句話是:「為了救亡圖存,必須振興科學。數學是科學的開路先鋒,為了發展科學,必須學好數學。」蘇步青一生不知聽過多少堂課,但這一堂課使他終身難忘。
楊老師的課深深地打動了他,給他的思想注入了新的興奮劑。讀書,不僅為了擺脫個人困境,而是要拯救中國廣大的苦難民眾;讀書,不僅是為了個人找出路,而是為中華民族求新生。當天晚上,蘇步青輾轉反側,徹夜難眠。在楊老師的影響下,蘇步青的興趣從文學轉向了數學,並從此立下了「讀書不忘救國,救國不忘讀書」的座右銘。一迷上數學,不管是酷暑隆冬,霜晨雪夜,蘇步青只知道讀書、思考、解題、演算,4年中演算了上萬道數學習題。現在溫州一中(即當時省立十中)還珍藏著蘇步青一本幾何練習薄,用毛筆書寫,工工整整。中學畢業時,蘇步青門門功課都在90分以上。
17歲時,蘇步青赴日留學,並以第一名的成績考取東京高等工業學校,在那裡他如飢似渴地學習著。為國爭光的信念驅使蘇步青較早地進入了數學的研究領域,在完成學業的同時,寫了30多篇論文,在微分幾何方面取得令人矚目的成果,並於1931年獲得理學博士學位。獲得博士之前,蘇步青已在日本帝國大學數學系當講師,正當日本一個大學准備聘他去任待遇優厚的副教授時,蘇步青卻決定回國,回到撫育他成長的祖任教。回到浙大任教授的蘇步青,生活十分艱苦。面對困境,蘇步青的回答是「吃苦算得了什麼,我甘心情願,因為我選擇了一條正確的道路,這是一條愛國的光明之路啊!」
這就是老一輩數學家那顆愛國的赤子之心。

5. 華羅庚的故事
同學們都知道,華羅庚是一位靠自學成才的世界一流的數學家。他僅有初中文憑,因一篇論文在《科學》雜志上發表,得到數學家熊慶來的賞識,從此華羅庚北上清華園,開始了他的數學生涯。

1946年,華羅庚應邀去美國講學,並被伊利諾大學高薪聘為終身教授,他的家屬也隨同到美國定居,有洋房和汽車,生活十分優裕。當時,不少人認為華羅庚是不會回來了。
新中國的誕生,牽動著熱愛祖國的華羅庚的心。1950年,他毅然放棄在美國的優裕生活,回到了祖國,而且還給留美的中國學生寫了一封公開信,動員大家回國參加社會主義建設。他在信中坦露出了一顆愛中華的赤子之心:「朋友們!梁園雖好,非久居之鄉。歸去來兮……為了國家民族,我們應當回去……」雖然數學沒有國界,但數學家卻有自己的祖國。
華羅庚從海外歸來,受到黨和人民的熱烈歡迎,他回到清華園,被委任為數學系主任,不久又被任命為中國科學院數學研究所所長。從此,開始了他數學研究真正的黃金時期。他不但連續做出了令世界矚目的突出成績,同時滿腔熱情地關心、培養了一大批數學人才。為摘取數學王冠上的明珠,為應用數學研究、試驗和推廣,他傾注了大量心血。
據不完全統計,數十年間,華羅庚共發表了152篇重要的數學論文,出版了9部數學著作、11本數學科普著作。他還被選為科學院的國外院士和第三世界科學家的院士。
從初中畢業到人民數學家,華羅庚走過了一條曲折而輝煌的人生道路,為祖國爭得了極大的榮譽。

6. 籌算女傑王貞儀
女數學家王貞儀(1768-1797 ),字德卿,江寧人,是清代學者王錫琛之女,著有《西洋籌算增刪》一卷、《重訂策算證訛》一卷、《象數窺余》四卷、《術算簡存》五卷、《籌算易知》一卷。

從她遺留下來的著作可以看出,她是一位從事天文和籌算研究的女數學家。算籌,又被稱為籌、策、籌策等,有時亦稱為運算元,是一種棒狀的計算工具。一般是竹製或木製的一批同樣長短粗細的小棒,也有用金屬、玉、骨等質料製成的,不用時放在特製的算袋或運算元筒里,使用時在特製的算板、氈或直接在桌上排布。應用「算籌」進行計算的方法叫做「籌算」,算籌傳入日本稱為「算術」。算籌在中國起源甚早,《老子》中有一句「善數者不用籌策」的記述,現在所見的最早記載是《孫子算經》,至明朝籌算漸漸為珠算所取代。
17世紀初葉,英國數學家納皮爾發明了一種算籌計演算法,明末介紹到我國,也稱為「籌算」。清代著名數學家梅文鼎、戴震等人曾加以研究。戴震稱其為「策算」。王貞儀也從事研究由西洋傳入我國的這種籌算,並且寫了三卷書向國人介紹西洋籌算。她在著作中對西洋籌算進行增補講解,使之簡易明了。王貞儀介紹的納皮爾算籌乘除法,當時的讀者認為容易了解,但與當時我國的乘除法籌算的方法相比,顯得較繁雜,因此,數學家們沒有使用西洋籌算,一直使用中國籌演算法。今天的讀者把中外籌算乘除法視為老古董,採用的是由外國傳入的筆算四則運算,這種筆算於1903年才開始被使用,故我國與世界接軌使用筆算的歷史只有100年。

7. 華裔算傑張聖蓉

張聖蓉1948年生於陝西省西安市,出生不久便隨父母到台灣居住。她從小聰慧,喜愛讀書,對數學情有獨鍾。張聖蓉中學畢業後考入著名的台灣大學數學系,1970年獲學士學位。她不滿足於此,又以優異成績考入美國加利福尼亞大學,攻讀數學博士學位。

「函數」是數學中最基本、最重要的概念。一位著名數學家說過「函數概念是近現代數學思想之花」。它的產生、發展實質上反映了近現代數學迅速發展的歷程,同時也與函數論、解析數學的發展相輔相成。張聖蓉選擇了現代數學的重要前沿分支之一「函數論」作為攻讀對象。她的導師是一位著名的函數論世界大師,她要同函數論專家一道去摘取函數論皇冠上的明珠。

1974年,張聖蓉獲伯克利加利福尼亞大學博士學位,從此在美國從事函數論的研究工作。她對函數論中復平面上的解析函數、多復變函數以及有界函數的解析函數的逼近等高深領域都有涉獵,1976年,28歲的張聖蓉通過對道格拉斯函數的研究撰寫了世人沒有發現的這類函數特徵的論文,這為第二年著名數學家馬歇爾解決著名的道格拉斯猜測鋪平了道路。張聖蓉一鳴驚人,1977年又撰寫出另一篇令函數論專家驚嘆的論文,證明了馬歇爾攻克道格拉斯猜測中的一個未發現的難題。在清一色的男數學家主導的函數論領域,她確立了自己的地位。

8數學家的墓誌銘

一些數學家生前獻身於數學,死後在他們的墓碑上,刻著代表著他們生平業績的標志。
古希臘學者阿基米德死於進攻西西里島的羅馬敵兵之手(死前他還在主:「不要弄壞我的圓」。)後,人們為紀念他便在其墓碑上刻上球內切於圓柱的圖形,以紀念他發現球的體積和表面積均為其外切圓柱體積和表面積的三分之二。 德國數學家高斯在他研究發現了正十七邊形的尺規作法後,便放棄原來立志學文的打算 而獻身於數學,以至在數學上作出許多重大貢獻。甚至他在遺囑中曾建議為他建造正十七邊形的稜柱為底座的墓碑。
16世紀德國數學家魯道夫,花了畢生精力,把圓周率算到小數後35位,後人稱之為魯 道夫數,他死後別人便把這個數刻到他的墓碑上。 瑞士數學家雅谷·伯努利,生前對螺線(被譽為生命之線)有研究,他死之後,墓碑上 就刻著一條對數螺線,同時碑文上還寫著:「我雖然改變了,但卻和原來一樣」。這是一句既刻劃螺線性質又象徵他對數學熱愛的雙關語

⑵ C語言,哥德巴赫猜想,不用函數怎麼做。 數學領域著名的「哥德巴赫猜想」的大致意思是:任何一個

#include <stdio.h>

#include <math.h>

bool IsPrimeNumber(int nNumber)
{
bool bIsPrime = 1;
int nSqrtN = 0;
int i = 0;
if (0 > nNumber)
{
bIsPrime = 0;
}
nSqrtN = sqrt((double)nNumber);
for (i = 2; i <= nSqrtN; i++)
{
if (0 == nNumber % i)
{
bIsPrime = 0;
break;
}
}
return bIsPrime;
}
bool Goldbach(int nGoldbachNumber)
{
int i = 0;

int nNumberP = 0;
int nNumberQ = 0;
bool bIsGoldbachN = 1;
bool bIsPrimeN = 0;
if (2 > nGoldbachNumber)
{
bIsGoldbachN = 0;
return bIsGoldbachN;
}
nNumberP = 2;
nNumberQ = nGoldbachNumber - nNumberP;
bIsPrimeN = IsPrimeNumber(nNumberQ);
if (1 == bIsPrimeN)
{
bIsGoldbachN = 1;
printf("%d = %d + %d;\n", nGoldbachNumber, nNumberP, nNumberQ);
}
for (nNumberP = 3; nNumberP <= nGoldbachNumber / 2; nNumberP = nNumberP + 2)
{
bIsPrimeN = IsPrimeNumber(nNumberP);
if (1 == bIsPrimeN)
{
nNumberQ = nGoldbachNumber - nNumberP;
bIsPrimeN = IsPrimeNumber(nNumberQ);
if (1 == bIsPrimeN)
{
bIsGoldbachN = 1;
printf("%d = %d + %d;\n", nGoldbachNumber, nNumberP, nNumberQ);
break;
}
}
}
return bIsGoldbachN;
}
int main(int argc, _TCHAR* argv[])
{
bool bIsBool = 1;

int n = 4;
for (n = 4; 0x7fffffff > n; n++)
{
(void)Goldbach(n);
}

return 0;
}

⑶ 誰說出幾個世界著名的數學定理(5個以上),誰先說出並符合要求,我就採納誰。

1.平面幾何
幾個重要定理:梅涅勞斯定理、塞瓦定理、托勒密定理、西姆松定理。
三角形中的幾個特殊點:旁心、費馬點,歐拉線。
幾何不等式。
幾何極值問題。
幾何中的變換:對稱、平移、旋轉。
圓的冪和根軸。
面積方法,復數方法,向量方法,解析幾何方法。

2.代數
周期函數,帶絕對值的函數。
三角公式,三角恆等式,三角方程,三角不等式,反三角函數。
遞歸,遞歸數列及其性質,一階、二階線性常系數遞歸數列的通項公式。
第二數學歸納法。
平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函數。
復數及其指數形式、三角形式,歐拉公式,棣莫弗定理,單位根。
多項式的除法定理、因式分解定理,多項式的相等,整系數多項式的有理根*,多項式的插值公式*。
n次多項式根的個數,根與系數的關系,實系數多項式虛根成對定理。
函數迭代,簡單的函數方程*

3. 初等數論
同餘,歐幾里得除法,裴蜀定理,完全剩餘類,二次剩餘,不定方程和方程組,高斯函數[x],費馬小定理,格點及其性質,無窮遞降法,歐拉定理*,孫子定理*。

4.組合問題
圓排列,有重復元素的排列與組合,組合恆等式。
組合計數,組合幾何。
抽屜原理。
容斥原理。
極端原理。
圖論問題。
集合的劃分。
覆蓋。
平面凸集、凸包及應用*。

⑷ excel中一列姓名,有兩個字的,有三個字的,已經寫完一列姓了(用LEFT函數),如何用公式寫出名

  1. 公式為:

    =RIGHT(A1,LEN(A1)-LEN(B1))

  2. 如下圖所示:


⑸ 著名的心形函數r=a(1-sinθ)的分段一次函數表達式是多少

1、樓主問:著名的心形抄函數r=a(1-sinθ)的分段一次函數表達式是多少?
答:心形函數,再怎麼分段,也不是一次函數!
2、樓主說:我認為這個心形可以切成非常小非常小的無數條直線……。
答:樓主的「認為」,應該是錯誤的!
即使切成「非常小」的線段,也不是直線,至多隻能是近似直線。但「近似」與「等於」畢竟是不一樣的!
3、樓主問:那麼這些無數條直線的方程式多少?
答:見上面的回答,不可能是直線!至多是「近似」直線。
4、樓主問:有什麼會規律嗎?
答:如果是「化為」無窮多個直線段的累加,沒什麼規律。
5、樓主說:還有我也覺得可以分成無數個二次函數……。
答:樓主的這個「覺得」也是不對的,至多是「近似」二次函數。
6、樓主問:那麼這些二次函數解析式有什麼規律嗎?
答:見上述第3個回答。
7、樓主問:是多少?
答:不存在的內容,談不上「多少」。

樓主如果一定要做,可以用泰勒公式,將sinθ展開成θ的冪級數。
但依然不符合樓主的要求。

⑹ 德國著名數學家狄利克雷在數學領域成就顯著,以其名命名的函數f(x)=1,x∈Q0,x∈RQ被稱為狄利克雷函

對於①,∵當x為有理抄數時襲,f(x)=1;當x為無理數時,f(x)=0,
∴當x為有理數時,f(f(x))=f(1)=1;當x為無理數時,f(f(x))=f(0)=1,
即不管x是有理數還是無理數,均有f(f(x))=1,故①錯誤;
對於②,因為有理數的相反數還是有理數,無理數的相反數還是無理數,
所以對任意x∈R,都有f(-x)=f(x),故②正確;
對於③,若x是有理數,則x+T也是有理數; 若x是無理數,則x+T也是無理數,
∴根據函數的表達式,任取一個不為零的有理數T,f(x+T)=f(x)對x∈R恆成立,故③正確;
對於④,取x1=-

⑺ 著名的Dirichlet函數

你把 y=D(x) ,根據你前面的說法,y只能取兩個值 0和1
D【D(x)】=D(y) ,y 的取值0和1都是有理數,自然D【D(x)】=1

⑻ 什麼是函數

函數的定義:給定一個數集A,假設其中的元素為x。現對A中的元素x施加對應法則f,記作f(x),得到另一數集B。假設B中的元素為y。則y與x之間的等量關系可以用y=f(x)表示。我們把這個關系式就叫函數關系式,簡稱函數。函數概念含有三個要素:定義域A、值域C和對應法則f。其中核心是對應法則f,它是函數關系的本質特徵。

⑼ 著名的狄利克雷函數是這樣定義的 這個函數的自變數與因變數分別是什麼

y=D(x)={1 ,x為有理數;
{-1,x為無理數。

熱點內容
美發店認證 發布:2021-03-16 21:43:38 瀏覽:443
物業糾紛原因 發布:2021-03-16 21:42:46 瀏覽:474
全國著名不孕不育醫院 發布:2021-03-16 21:42:24 瀏覽:679
知名明星確診 發布:2021-03-16 21:42:04 瀏覽:14
ipad大專有用嗎 發布:2021-03-16 21:40:58 瀏覽:670
公務員協議班值得嗎 發布:2021-03-16 21:40:00 瀏覽:21
知名書店品牌 發布:2021-03-16 21:39:09 瀏覽:949
q雷授權碼在哪裡買 發布:2021-03-16 21:38:44 瀏覽:852
圖書天貓轉讓 發布:2021-03-16 21:38:26 瀏覽:707
寶寶水杯品牌 發布:2021-03-16 21:35:56 瀏覽:837