方程中的元和次等術語是由誰創造的
1. 一元一次方程中的「元」產生於什麼年代是哪位數學家發明的原來的意思是什麼
一元一次方程中的「元」產生的年代沒有明確的記錄,據說是康熙皇帝在學習西方數學時回提出的,因當時答沒有可以代替「未知數」的代詞,因此採用「元」為方程的未知數。
公元820年左右,數學家花拉子米在《對消與還原》一書中提出了「合並同類項」、「移項」的一元一次方程思想。16世紀,數學家韋達創立符號代數之後,提出了方程的移項與同除命題。1859年,數學家李善蘭正式將這類等式譯為一元一次方程。
(1)方程中的元和次等術語是由誰創造的擴展閱讀:
一元一次方程可以解決絕大多數的工程問題、行程問題、分配問題、盈虧問題、積分表問題、電話計費問題、數字問題。
如果僅使用算術,部分問題解決起來可能異常復雜,難以理解。而一元一次方程模型的建立,將能從實際問題中尋找等量關系,抽象成一元一次方程可解決的數學問題。
2. 我們現在數學用的方程,根,解等名詞都是康熙創造出來的嗎有何依據(正史,謝謝!)
康熙教皇子數學、天文學、地理學、醫學、測量學、農學等。先以觀測日食內為例。康熙三十六年(1697年)閏三容月初一日,日食。時康熙帝親征噶爾丹在外,皇太子在北京觀測,使用皇父所賜嵌有三層玻璃的小鏡子,裝於自鳴鍾之上,用望日千里眼觀望。日食似不到十分,日光、房屋、牆壁及人影俱可見,甚屬明耀。觀測奏報自京城發出,送皇父覽閱。康熙帝得到奏報後,硃批曰:「覽爾所奏,果然如此。」後來皇四子胤禛(雍正)回憶道:「昔年遇日食四五分之時,日光照耀,難以仰視。皇考親率朕同諸兄弟在乾清宮,用千里鏡,四周用夾紙遮蔽日光,然後看出考驗所虧分數。此朕身經實驗者。」又以幾何學為例。法國耶穌會士白晉寫給法王路易十四的信中說,康熙帝親自給皇三子胤祉講解幾何學,並培養其科學才能。後又讓胤祉等向義大利耶穌會士德理格學習律呂知識,「命臣德理格在皇三子、皇十五子、皇十六子殿下前,每日講究其精微,修造新書」。康熙帝命在暢春園蒙養齋開館,派允祉主持纂修《律歷淵源》,匯律呂、歷法和演算法於一書。允祉還為《古今圖書集成》的纂輯做出貢獻,成為康熙朝一位傑出的學者。但他在雍正繼位後,仍未逃過劫難:被奪爵,禁景山永安亭而死。
3. 數學方程式中的元和次是誰創立的
數學方程式中的元和次是中國清朝時期的康熙皇帝創立的。
康熙皇帝是中國歷史上聲名顯赫,又有遠大抱負,聰明好學的一位皇帝。他除了其文治武功之外 ,還十分愛好數學,曾拜比利時的南懷仁等傳教士為師,學習數學 、天文、地理以及拉丁文等,康熙皇帝雖然聰穎過人,但是聽外籍教師講課也有困難,因為南懷仁等人的漢語和滿語水平有限,日常會話勉強對付,但要將嚴謹而高深的科學知識表達出來就顯得力不從心了。而當時課本多是外文,即使中譯本也是半通不通的。這樣,學習中就必然有許多精 力被消耗在語言溝通上,進度不快 。
不過,康熙學習很刻苦,也很有耐心,不懂就請教,直至真正弄懂為止。南懷仁在講方程時,句子冗長,吐音又很不清楚,康熙的腦子常常被搞得暈暈糊糊的,怎樣才能讓老師講得好懂呢?一陣冥思苦想後,一個妙法突然冒出來。他向南懷仁建議 ,將未知數翻譯為「元」,最高次數翻譯為「次」(限整式方程),使方程左右兩邊相等的未知數的值翻譯為「根」(解)⋯⋯南懷仁用筆認真地記了下來 ,隨即用這些新創術語換下自己原先使用的繁瑣詞語 :「求二『元』一『次』方程的『根 』(解 )⋯⋯「如此一來,果然簡單了很多,而且還可以提高教學效率,南懷仁驚疑地盯著康熙,愣怔了一會兒,突然按照西方最親切的禮節一下子將康熙緊緊抱住:「我讀書和教書幾十年,無論是老師還是學生,還從來沒見過一個像您這樣肯動腦筋的人 !」
正因為康熙創造的這幾個數學術語科學而簡潔,十分便於理解和記憶,因此一直延用到今天 。
4. 方程中的元!!!
說法1:古時候常用通假字,而「元」通「源」,解方程其實就是"追本朔源"。說法2:康熙皇帝拜比利時的傳教士南懷仁為師,學習數學。他雖然聰穎,但是聽南懷仁講課並不輕松,因為老師的漢語和滿語水平有限,日常會話還能夠勉強對付,而要將嚴謹而高深的科學知識表達清楚往往就力不從心了。南懷仁在講方程時句子冗長,吐音又很不清楚,康熙常常被搞得暈頭轉向。
怎樣才能讓老師講得好懂呢?經過冥思苦想,學生向老師建議,將未知數翻譯為「元」,最高次數翻譯為「次」(限整式方程),使方程左右兩邊相等的未知數的值翻譯為「根」或「解」……
南懷仁用筆認真地記下來,他發現,用這些新創術語換下自己原先使用的繁瑣詞語來表達,果然清晰多了。這使他大為驚異。
康熙創造的這幾個數學術語科學而簡潔,便於理解和記憶,因此一直沿用到今天。 聲明:答案非原創,來源於網路。