數學中的元和次是誰創造
Ⅰ 方程中的元和次代表什麼
^元代表著方程中有幾個未知數,次是代表方程中最高次數,比若說 一個方程 X+Y^2=1,則是二元一次方程。
方程表示兩個數學式(如兩個數、函數、量、運算)之間相等關系的一種等式,使等式成立的未知數的值稱為「解」或「根」。求方程的解的過程稱為「解方程」。
通過方程求解可以免去逆向思考的不易,直接正向列出含有欲求解的量的等式即可。方程具有多種形式,如一元一次方程、二元一次方程、一元二次方程等等,還可組成方程組求解多個未知數。
(1)數學中的元和次是誰創造擴展閱讀:
微分方程
微分方程將一些函數與其導數相關聯的數學方程。在應用中,函數通常表示物理量,衍生物表示其變化率,方程定義了兩者之間的關系。因為這種關系是非常常見的,微分方程在包括工程,物理,經濟學和生物學在內的許多學科中起著突出的作用。
在純數學中,微分方程從幾個不同的角度進行研究,主要涉及到它們的解 - 滿足方程的函數集。只有最簡單的微分方程可以通過顯式公式求解;然而,可以確定給定微分方程的解的一些性質而不找到其確切形式。
如果解決方案的自包含公式不可用,則可以使用計算機數值近似解決方案。動力系統理論強調了微分方程描述的系統的定性分析,而已經開發了許多數值方法來確定具有給定精確度的解決方案。
Ⅱ 數學中的「元」、「次」、「根」是康熙命名的嗎
是的,康熙是我國歷史上數學水平最高的一位帝王。他天資聰慧,十分熱愛數學,14歲起跟著從比利時來華的傳教士南懷仁學習數學。
由於南懷仁的漢語和滿語水平十分有限,平時的日常會話還能勉強應付,但在教授嚴謹、高深的數學知識時,就不能很好地表述清楚,使得康熙學得不太輕松,經常被弄得暈頭轉向。
在學習方程時,南懷仁講授的句子冗長,加之吐詞不清楚,康熙學得很吃力。怎樣才能讓老師講得輕松一點呢?經過深思熟慮後,康熙向老師建議,將未知數用「元」來翻譯代替,最高次項的次數翻譯成「次」(特指整式方程),使方程左右兩邊相等的未知數的值用「根」(或「解」)來代替……。
(2)數學中的元和次是誰創造擴展閱讀
方程F(x)的根是指滿足F(x)=0的x的一切取值。一元二次方程根和解不同,根可以是重根,解一定不同,一元二次方程若有2個不同根,又稱有2個不同解。
一元方程中方程的解可能受到某些實際條件的限制,如:一道關於每天生產多少零件的應用題的函數符合²-10x-24=0 此方程的根:x=12,x2=-2,雖然x=-2符合方程的根的條件,但考慮實際應用,零件生產不可能是負數,所以,此時x2=-2不是這個問題的解了,只能說是方程的根。
Ⅲ 請問初一數學的元和次是什麼概念啊系數又是什麼啊,底數和指數又是什麼概念啊
元是未知數,常用x和y表示,如x+y=45,就是個二元方程式
次是未知數的次數,如x²,就是個二次式
系數是未知數前面的數字,如5x中,5就是系數
底數和指數是用於指數函數和對數函數上的,下方的數字為底數,上方的為指數,如:log3,6(本來3在下,6在上,但打不出來)3為底數,6為指數.
Ⅳ 數學方程的元和次分別表示什麼
數學方程的元是指:方程中含有不同未知數的個數;次數是指未知數的最高指數,最高指數是幾,就是幾次。
如:x的平方+y的3次方+z=28,就是一個三元3次方程。
必須含有未知數等式的等式才叫方程。等式不一定是方程,方程一定是等式。
(4)數學中的元和次是誰創造擴展閱讀:
解一元二次方程的基本思想方法是通過「降次」將它化為兩個一元一次方程。一元二次方程有四種解法:直接開平方法;配方法;公式法;分解因式法。
一般解一元二次方程,最常用的方法還是因式分解法,在應用因式分解法時,一般要先將方程寫成一般形式,同時應使二次項系數化為正數。
Ⅳ 在初中數學中,「一元一次」元和次各是什麼意思
元指未知數的個數,有幾個未知數就叫幾元,次指的是未知數或未知項的指數
Ⅵ 離散數學中最小元與極小元有什麼不同
最小元:假設a為最小元,則在集合A中,任取元素x,都有aRx.
極小元:假設a為極小元,則任取與a具有關系R的元素x,都有aRx.
Ⅶ 數學題中單位克/元和元/克的區別是
克/元表示每元多少克。如3克/元表示每元3克。
元/克表示每克多少元。如3元/克表示每克3元.
Ⅷ 數學方程式中的元和次是誰創立的
數學方程式中的元和次是中國清朝時期的康熙皇帝創立的。
康熙皇帝是中國歷史上聲名顯赫,又有遠大抱負,聰明好學的一位皇帝。他除了其文治武功之外 ,還十分愛好數學,曾拜比利時的南懷仁等傳教士為師,學習數學 、天文、地理以及拉丁文等,康熙皇帝雖然聰穎過人,但是聽外籍教師講課也有困難,因為南懷仁等人的漢語和滿語水平有限,日常會話勉強對付,但要將嚴謹而高深的科學知識表達出來就顯得力不從心了。而當時課本多是外文,即使中譯本也是半通不通的。這樣,學習中就必然有許多精 力被消耗在語言溝通上,進度不快 。
不過,康熙學習很刻苦,也很有耐心,不懂就請教,直至真正弄懂為止。南懷仁在講方程時,句子冗長,吐音又很不清楚,康熙的腦子常常被搞得暈暈糊糊的,怎樣才能讓老師講得好懂呢?一陣冥思苦想後,一個妙法突然冒出來。他向南懷仁建議 ,將未知數翻譯為「元」,最高次數翻譯為「次」(限整式方程),使方程左右兩邊相等的未知數的值翻譯為「根」(解)⋯⋯南懷仁用筆認真地記了下來 ,隨即用這些新創術語換下自己原先使用的繁瑣詞語 :「求二『元』一『次』方程的『根 』(解 )⋯⋯「如此一來,果然簡單了很多,而且還可以提高教學效率,南懷仁驚疑地盯著康熙,愣怔了一會兒,突然按照西方最親切的禮節一下子將康熙緊緊抱住:「我讀書和教書幾十年,無論是老師還是學生,還從來沒見過一個像您這樣肯動腦筋的人 !」
正因為康熙創造的這幾個數學術語科學而簡潔,十分便於理解和記憶,因此一直延用到今天 。
Ⅸ 離散數學里單位元與零元有什麼區別
單位元,就是滿足任意元素與之相乘,結果還是該任意元素
幺元,就是單位元。
零元,就是滿足任意元素與之相乘,結果還是零元