創造並最先使用語言的數學家是
① 數理邏輯最初是由哪位科學家提出的
數理邏輯是以符號語言為主要工具語言的邏輯,也被稱為符號邏輯.
其提出可以追溯到17世紀後期到18世紀早期的著名科學家和哲學家「萊布尼茨(Leibniz, 1646-1716)」,他的代表作是《人類理智新論》.他區分了理性真理和事實真理,前者必然為真,後者則或然為真,一切必然真理都是分析的.他試圖建立一種分析的真理體系.萊布尼茨曾設想過創造一種「通用的科學語言」,可以把推理過程象數學一樣利用公式來進行計算,從而得出保真的結論.他的思想成為數理邏輯部分內容的萌芽,從這個意義上講,萊布尼茨可以說是數理邏輯的先驅.
而數理邏輯的實際開創者應該說是英國哲學家和數學家布爾.1847年,布爾發表了《邏輯的數學分析》,建立了「布爾代數」,並創造一套符號系統,利用符號來表示邏輯中的各種概念.布爾建立了一系列的運演算法則,利用代數的方法研究邏輯問題,初步奠定了數理邏輯的基礎.
十九世紀末二十世紀初,數理邏輯有了比較大的發展,1884年,德國數學家弗雷格出版了《算術基礎》一書,在書中引入量詞的符號,使得數理邏輯的符號系統更加完備.對建立這門學科做出貢獻的,還有美國人皮爾斯,他也在著作中引入了邏輯符號.從而使現代數理邏輯最基本的理論基礎逐步形成,成為一門獨立的學科.
② 乘號是三百年前哪一位數學家最先使用的
英國數學家奧屈特於1631年提出用「×」表示相乘。另一乘號「·」是數學家赫銳奧特首創的。
③ 數學家們為研究古希臘三大尺規作圖難題花費了兩千年時間,( )創造並最先使用( )的超越性
這個不會啊。
④ 編程語言是誰發明的
我也抄一下。
奧古斯塔·阿達·金,勒芙蕾絲伯爵夫人(Augusta Ada King, Countess of Lovelace,1815年12月10日-1852年11月27日),原名奧古斯塔·阿達·拜倫(Augusta Ada Byron),通稱阿達·洛芙萊斯(Ada Lovelace),是著名英國詩人拜倫之女,數學家。計算機程序創始人,建立了循環和子程序概念。
為計算程序擬定「演算法」,寫作的第一份「程序設計流程圖」,被珍視為「第一位給計算機寫程序的人」。為了紀念阿達·奧古斯塔對現代電腦與軟體工程所產生的重大影響,美國國防部將耗費巨資、歷時近20年研製成功的高級程序語言命名為Ada語言,它被公認為是第四代計算機語言的主要代表。
在1842年,人稱「數字女王」的阿達·洛芙萊斯(Ada Lovelace)編寫了歷史上首款電腦程序。
在1834年,阿達的朋友——英國數學家、發明家兼機械工程師查爾斯·巴貝其(Charles Babbage)——發明了一台分析機;阿達則致力於為該分析機編寫演算法,並於1843 年公布了世界上第一套演算法。
巴貝其分析機後來被認為是最早期的計算機雛形,而阿達的演算法則被認為是最早的計算機程序和軟體。
1852年,阿達為了治療子宮頸癌,卻因此死於失血過多,得年36歲。無獨有偶,她與她父親拜倫死於相同年齡,一樣死於治療中的失血過多。她留下了兩個兒子與一位女兒—安妮·布蘭特貴女。
依她的遺言,阿達葬於諾丁漢哈克諾的聖 瑪麗亞·抹大拉教堂,長眠在父親的身旁。
在1842年與1843年其間,阿達花了9個月的時間翻譯義大利數學家路易吉·米那比亞對巴貝奇最新的計算機設計書(即分析機概論)所留下的備忘錄。在這部譯文里,她附加許多注記,內容詳細說明用計算機進行伯努利數的運算方式,而被認為是世界上第一個電腦程式;因此,阿達也被認為是世界上第一位程式設計師。巴貝奇在他所著的《經過哲學家人生》(Passages from the Life of a Philosopher, 1846)里留有下面的述敘:
倫敦科學館分析機復製品
「我認為她為米那比亞的備忘錄增加許多注記,並加入了一些想法。雖然這些想法是由我們一起討論出來的,但是最後被寫進注記里的想法確確實實是她自己的構想。我將許多代數運算的問題交給她處理,這些工作也與伯努利數的運算相關。在她所送回給我的文件,更修正了我先前在程序里的重大錯誤。」
阿達的文章創造出許多巴貝奇也未曾提到的新構想,比如阿達曾經預言道:「這個機器未來可以用來排版、編曲或是各種更復雜的用途。」
她死後一百年,於1953年,阿達之前對查爾斯·巴貝奇的《分析機概論》所留下的筆記被重新公布,並被公認對現代計算機與軟體工程造成了重大影響。[2]
在1980年12月10日,美國國防部製作了一個新的高級計算機編程語言——Ada,以紀念阿達·洛芙萊斯。
在微軟的Wins產品里也可以找到阿達的全息圖標簽。
英國計算機公會每年都頒發以阿達命名的軟體工程創新大獎。
⑤ 是誰發明並先使用英語的
英語不是誰發明的.
英國原住民說的好象是一種哥特語,據說愛爾蘭語就是其後裔.後來大陸的日爾曼人入侵,帶去了一種日爾曼語,就是古英語的前身了.古英語再演變為現代英語.
樓上的說的是"英文",而樓主問的是"英語"啊。
樓上的說法還應該補充一下____
希臘人發明了母音字母.
拉丁字母是由希臘字母演變而來的.
英文字母採用的是拉丁字母.
⑥ 常用的數學符號是誰創造出來的
人們會計算加法、減法、乘法和除法已經有好幾千年的歷史了。
但是使用+、-、×、÷等數學符號卻是近幾百年的事。那麼,這些符號是由誰創造出來的呢?
加、減號(+、-),是15世紀德國數學家魏德曼首創的。他在橫線上加一豎,表示增加、合並的意思;在加號上去掉一豎表示減少、拿去的意思。
乘號(×),是17世紀英國數學家歐德萊最先使用的。因為乘法與加法有一定的聯系,所以他把加號斜著寫表示相乘。後來,德國數學家萊布尼茲認為「×」易與字母「x」混淆,主張用「·」號,至今「×」與「·」並用。
除號(÷),是17世紀瑞士數學家雷恩首先使用的。他用一道橫線把兩個圓點分開,表示分解的意思。後來萊布尼茲主張用「:」作除號,與當時流行的比號一致。現在有些國家的除號和比號都用「:」表示。
等號(=),是16世紀英國學者列科爾德創造的,他用兩條平行而又相等的直線來表示兩數相等。
中括弧()和大括弧(),是16世紀英國數學家魏治德創造的。
大於號(>)和小於號(<),是17世紀的數學家哈里奧特創立的。
這些數學符號既簡單,又方便。使用它們,是數學上的一大進步。
⑦ 數學是怎樣創造出來的
一個人從小學到大學都離不開數學課,就連現在所有大學里的文科專業也開設了高等數學課,甚至幼兒園的小朋友都要學習從計數開始的數學。從人類久遠的古代計數所產生的自然數和從具有某種特定形狀的物體所產生的點、線、面等,就已經是經過人們高度抽象化了的概念。
數學,這門古老而又常新的科學,已大步邁進了21世紀。數學科學的巨大發展,比以往任何時代都更牢固地確立了它作為整個學科技術的基礎地位。數學正突破傳統的應用范圍向幾乎所有的人類知識領域滲透,並越來越直接地為人類物質生產與日常生活作出貢獻。同時,數學作為一種文化,已成為人類文明進步的標志。因此,對於當今社會每一個文化人而言,不論他從事何種職業,都需要學習數學、了解數學和運用數學。現代社會對數學的這種需要,在未來無疑將更加與日俱增。
數學是怎樣創造出來的?能夠做出數學命題和系統的頭腦是怎樣的頭腦?幾何學家或代數學家的智力活動比之音樂家、詩人、畫家和棋手又怎麼樣?在數學的創造中哪些是關鍵因素?是直覺還是敏銳感?是計算機似的精確性嗎?是特強的記憶力嗎?還是追隨復雜的邏輯次序時可敬畏的技巧?或者是極高度的用心集中嗎?
數學的思考模式,就是把具體的事物抽象化,把抽象的事物公式化,把復雜的事物簡單化,做任何事都首先能有一個提綱挈領的全盤思考然後再去做,效果肯定是事半功倍的。這既是成功人士的思維習慣,也是快樂人生的思維習慣。
陶哲軒是個天才,他6歲時在家看手冊自學了計算機BASIC語言並開始為數學問題編程;8歲時,他寫的「斐波那契」程序的導言就因為「太好玩」而被數學家克萊門特完全引用;20歲時,他獲得普林斯頓大學博士學位;24歲被洛杉磯加州大學聘為正教授;31歲獲數學領域的世界最高獎。
童年的陶哲軒始終是活潑的、有創造力的、有時愛做惡作劇的孩子,父母總是給他時間讓他玩,讓他有時間想自己的東西,因為他們擔心不這樣做,兒子的創造力就會慢慢枯竭。
他曾謙虛地說:「我到現在也沒摸清作文的竅門,我比較喜歡明確一些定理規則然後去做事。」他童年時寫《我的家庭》時,他就把家裡從一個房間寫到另一個房間,記下一些細節,並排了一個目錄。不理解他的人會認為——他真的不會寫作,理解他的人會知道——他已經掌握了用數學模式思考所有問題的能力,這就是數學家與普通人的思維方式的區別。
數學是人創造出的最簡單也是最系統的學科,小到生活里的各種計算,大到對國家的科技貢獻。也許你會認為,科學與藝術、數學與哲學,這些學科的分界越往上越模糊,但你要記住:所有的知識到了最後都是相同的,而他們一開始的基礎也是一樣的,那就是用最准確的方式描述出事物的特徵和規律。而數學就是讓我們學習找到這種特徵和規律的方法,即用數學的模式去思考、去判斷、去解決,由繁到簡、由難到易,這不僅是思維的飛越,更是能力的飛越。一個能夠體驗「我思故我樂」的孩子,他的人生也一定是不同尋常的!
數學創造力
⑧ 中國歷史上第一個數學家是誰
劉徽(約公元225年—295年)是魏晉期間偉大的數學家,中國古典數學理論的奠基人之一。是中國數學史上一個非常偉大的數學家,他的傑作《九章算術注》和《海島算經》,是中國最寶貴的數學遺產。劉徽思想敏捷,方法靈活,既提倡推理又主張直觀.他是中國最早明確主張用邏輯推理的方式來論證數學命題的人.劉徽的一生是為數學刻苦探求的一生.他雖然地位低下,但人格高尚.他不是沽名釣譽的庸人,而是學而不厭的偉人,他給我們中華民族留下了寶貴的財富。
⑨ 誰發明了那些經典的編程語言
《軟體故事:誰發明了那些經典的編程語言》介紹了多種語言和軟體的起源以及促進軟體行業發展的重大成就,以傳記體講述了埋沒於歷史洪流卻起到了關鍵作用的編程人員及其貢獻,包括「存儲式計算」早期出現的女性軟體先驅的故事。
本書內容主要包括:約翰·
巴克斯發明Fortran
語言、約翰·
麥卡錫設計Lisp語言、「COBOL
之母」葛麗絲·
霍普等人創建COBOL
語言、肯·
湯普森與丹尼斯·
里奇開發Unix
操作系統和C
語言、托馬斯·
庫爾茲與約翰·
凱默尼開發basic
語言、本賈尼·
斯特勞斯特盧普開發C++、「Word
之父」查爾斯·
西蒙尼研發Word、阿蘭·
凱伊設計Smalltalk
語言、安迪·赫茲菲爾德等研發Macintosh、錢柏林等創建SQL
語言、詹姆斯·高斯林發明Java,等等。
《軟體故事:誰發明了那些經典的編程語言》適合計算機相關從業人員及對軟體行業感興趣的讀者參考閱讀。
⑩ 數學家有哪些發明了什麼對世界有多大成就
1、牛頓:微積分的創建、萬有引力。2、歐拉:無窮小分析引論》一書便是他劃時代的代表作,當時數學家們稱他為「分析學的化身」。另外,歐拉還創設了許多數學符號,一直使用至今,如π,i,e,sin,cos,tg,Δx,Σ,f(x)等。而哥德巴赫猜想也是在他與哥德巴赫的通信中首先提出來的。歐拉還首先完成了月球繞地球運動的精確理論,創立了分析力學、剛體力學等力學學科,深化瞭望遠鏡、顯微鏡的設計計算理論等等。4、伽羅瓦:首次引入了「群」的概念,(寄給大數學家柯西審閱,可惜柯西輕視該文,未認真審閱,致使該理論推遲了50年)18歲時,再次寄出,這次寄給大數學家傅立葉,可惜傅立葉病死,未能審閱。19歲時,第三次寄出,這次寄給了大數學家泊松,但是泊松最終給的批語是「完全無法理解」。這些失誤致使「群倫」這一數學最重要的分支遲到了50年的時間。5、亨利·龐加萊,龐加萊一生發表的科學論文約500篇、科學著作約30部,幾乎涉及到數學的所有領域以及理論物理、天體物理等的許多重要領域。6、希爾伯特。希爾伯特的研究涉及現代數學的許多領域,如不變數理論、代數數論、幾何基礎、積分方程和物理學的公理化、數學基礎和數理邏輯等。希爾伯特是對二十世紀數學有深刻影響的數學家之一,對他提出的23個問題,似乎至今仍在促進現代數學的研究和發展。大數學家韋爾(H.Weyl)在希爾伯特去世時的悼詞中曾說:「希爾伯特就像穿雜色衣服的風笛手,他那甜蜜的笛聲誘惑了如此眾多的老鼠,跟著他跳進了數學的深河。」7、陳省身:陳省身開創並領導著整體微分幾何、纖維叢微分幾何、「陳省身示性類」等領域的研究,他是有史以來唯一獲得世界數學界最高榮譽「沃爾夫獎」的華人,被稱為「當今最偉大的數學家」,被國際數學界尊為「微分幾何之父」。
國際著名數學大師,沃爾夫數學獎得主,陳省身
1931年入清華大學研究院,1934軍獲碩士學位.1934年去漢堡大學從Blaschke學習.1937年回國任西南聯合大學教授.1943年到1945年任普林斯頓高等研究所研究員.1949年初赴美,旋任芝加哥大學教授.1960年到加州大學伯克利分校任教授,1979年退休成為名譽教授,仍繼續任教到1984年.1981年到1984年任新建的伯克利數學研究所所長,其後任名譽所長。陳省身的主要工作領域是微分幾何學及其相關分支.還在積分幾何,射影微分幾何,極小子流形,網幾何學,全曲率與各種浸入理論,外微分形式與偏微分方程等諸多領域有開拓性的貢獻.陳省身本有極多榮譽,包括中央研究院院士(1948).美國國家科學院院士(1961)及國家科學獎章(1975),倫敦皇家學會國外會員(1985),法國科學院國外院士』(1989),中國科學院國外院士等。榮獲1983/1984年度Wolf獎,及1983年度美國科學會Steele獎中的終身成就獎.
2.享有國際盛譽的大數學家,新中國數學事業發展的重要奠基人 華羅庚
華羅庚是一位人生經歷傳奇的數學家,早年輟學,1930年因在《科學》上發表了關於代數方程式解法的文章,受到熊慶來的重視,被邀到清華大學學習和工作,在楊武之指引下,開始了數論的研究。1936年,作為訪問學者去英國劍橋大學工作。1938年回國,受聘為西南聯合大學教授。1946年應美國普林斯頓高等研究所邀請任研究員,並在普林斯頓大學執教。1948年開始,他為伊大學教授。1950年回國,先後任清華大學教授,中國科學院數學研究所所長,數理化學部委員和學部副主任,中國科學技術大學數學系主任、副校長,中國科學院應用數學研究所所長,中國科學院副院長、主席團委員等職。還擔任過多屆中國數學會理事長。此外,華羅庚還是第一、二、三、四、五屆全國人民代表大會常務委員會委員和中國人民政治協商會議第六屆全國委員會副主席。華羅庚是在國際上享有盛譽的數學家,他的名字在美國施密斯松尼博物館與芝加哥科技博物館等著名博物館中,與少數經典數學家列在一起。他被選為美國科學院國外院士,第三世界科學院院士,聯邦德國巴伐利亞科學院院士。又被授予法國南錫大學、香港中文大學與美國伊利諾伊大學榮譽博士。華羅庚在解析數論、矩陣幾何學、典型群、自守函數論、多復變函數論、偏微分方程、高維數值積分等廣泛數學領域中都作出卓越貢獻。由於華羅庚的重大貢獻,有許多用他他的名字命名的定理、引理、不等式、運算元與方法。他共發表專著與學術論文近三百篇。華羅庚還根據中國實情與國際潮流,倡導應用數學與計算機研製。他身體力行,親自去二十七個省市普及應用數學方法長達二十年之久,為經濟建設作出了重大貢獻。
3.僅次於哥德爾的邏輯數學大師,王浩
1943年於西南聯合大學數學系畢業。1945年於清華大學研究生院哲學部畢業。1948年獲美國哈佛大學哲學博士學位。1950~1951年在瑞士聯邦工學院數學研究所從事研究工作1951~1953年任哈佛大學助理教授。1954~1961年在英國牛津大學作第二套洛克講座講演,又任邏輯及數理哲學高級教職。1961~1967 年任哈佛大學教授。1967年後任美國洛克斐勒大學教授,主持邏輯研究室工作。1985年兼任中國北京大學名譽教授。1986年兼任中國清華大學名譽教授。50年代 初被選為美國國家科學院院士,後又被選為不列顛科學院外國院士,美籍華裔數學家、邏輯學家、計算機科學家、哲學家。
4.著名數學家力學家,美國科學院院士,林家翹
1937年畢業於清華大學物理系。1941年獲加拿大多倫多大學碩士學位。1944年獲美國加州理工學院博士學位。1953 年起先後擔任美國麻省理工學院數學教授、學院教授、榮譽退休教授。 林家翹教授曾獲:美國機械工程師學會Timoshenko獎,美國國家科學院應用數學和數值分析獎,美國物理學會流體力學獎。他是美國國家文理學院院士(1951),美國國家科學院院士(1962),台灣「中央研究院」院士(1960)。從40年代開始,林家翹教授在流體力學的流動穩定性和湍流理論方面的工作帶動了整整一代人在這一領域的研究探索。從60年代開始,他進入天體物理的研究領域,開創了星系螺旋結構的密度波理論,並為國際所公認。1994年6月8日當選為首批中國科學院外籍士。
1.費爾馬大定理,起源於三百多年前,挑戰人類3個世紀,多次震驚全世界,耗盡人類眾多最傑出大腦的精力,也讓千千萬萬業余者痴迷。終於在1994年被安德魯·懷爾斯攻克。古希臘的丟番圖寫過一本著名的「算術」,經歷中世紀的愚昧黑暗到文藝復興的時候,「算術」的殘本重新被發現研究。
1637年,法國業余大數學家費爾馬(Pierre de Fremat)在「算術」的關於勾股數問題的頁邊上,寫下猜想:x^n+ y^n =z^n 是不可能的(這里n大於2;a,b,c,n都是非零整數)。此猜想後來就稱為費爾馬大定理。費爾馬還寫道「我對此有絕妙的證明,但此頁邊太窄寫不下」。一般公認,他當時不可能有正確的證明。猜想提出後,經歐拉等數代天才努力,200年間只解決了n=3,4,5,7四種情形。1847年,庫木爾創立「代數數論」這一現代重要學科,對許多n(例如100以內)證明了費爾馬大定理,是一次大飛躍。
歷史上費爾馬大定理高潮迭起,傳奇不斷。其驚人的魅力,曾在最後時刻挽救自殺青年於不死。他就是德國的沃爾夫斯克勒,他後來為費爾馬大定理設懸賞10萬馬克(相當於現在160萬美元多),期限1908-2007年。無數人耗盡心力,空留浩嘆。最現代的電腦加數學技巧,驗證了400萬以內的N,但這對最終證明無濟於事。1983年德國的法爾廷斯證明了:對任一固定的n,最多隻有有限多個a,b,c振動了世界,獲得費爾茲獎(數學界最高獎)。
歷史的新轉機發生在1986年夏,貝克萊·瑞波特證明了:費爾馬大定理包含在「谷山豐—志村五朗猜想 」 之中。童年就痴迷於此的懷爾斯,聞此立刻潛心於頂樓書房7年,曲折卓絕,匯集了20世紀數論所有的突破性成果。終於在1993年6月23日劍橋大學牛頓研究所的「世紀演講」最後,宣布證明了費爾馬大定理。立刻震動世界,普天同慶。不幸的是,數月後逐漸發現此證明有漏洞,一時更成世界焦點。這個證明體系是千萬個深奧數學推理連接成千個最現代的定理、事實和計算所組成的千百回轉的邏輯網路,任何一環節的問題都會導致前功盡棄。懷爾斯絕境搏鬥,毫無出路。1994年9月19日,星期一的早晨,懷爾斯在思維的閃電中突然找到了迷失的鑰匙:解答原來就在廢墟中!他熱淚奪眶而出。懷爾斯的歷史性長文「模橢圓曲線和費爾馬大定理」1995年5月發表在美國《數學年刊》第142卷,實際占滿了全卷,共五章,130頁。1997年6月27日,懷爾斯獲得沃爾夫斯克勒10萬馬克懸賞大獎。離截止期10年,圓了歷史的夢。他還獲得沃爾夫獎(1996.3),美國國家科學家院獎(1996.6),費爾茲特別獎(1998.8)。
2.四色問題的內容是:「任何一張地圖只用四種顏色就能使具有共同邊界的國家著上不同的顏色。」用數學語言表示,即「將平面任意地細分為不相重疊的區域,每一個區域總可以用1,2,3,4這四個數字之一來標記,而不會使相鄰的兩個區域得到相同的數字。」(右圖)
這里所指的相鄰區域,是指有一整段邊界是公共的。如果兩個區域只相遇於一點或有限多點,就不叫相鄰的。因為用相同的顏色給它們著色不會引起混淆。
四色猜想的提出來自英國。1852年,畢業於倫敦大學的弗南西斯·格思里來到一家科研單位搞地圖著色工作時,發現了一種有趣的現象:「看來,每幅地圖都可以用四種顏色著色,使得有共同邊界的國家都被著上不同的顏色。」這個現象能不能從數學上加以嚴格證明呢?他和在大學讀書的弟弟格里斯決心試一試。兄弟二人為證明這一問題而使用的稿紙已經堆了一大疊,可是研究工作沒有進展。
1852年10月23日,他的弟弟就這個問題的證明請教了他的老師、著名數學家德·摩爾根,摩爾根也沒有能找到解決這個問題的途徑,於是寫信向自己的好友、著名數學家漢密爾頓爵士請教。漢密爾頓接到摩爾根的信後,對四色問題進行論證。但直到1865年漢密爾頓逝世為止,問題也沒有能夠解決。
1872年,英國當時最著名的數學家凱利正式向倫敦數學學會提出了這個問題,於是四色猜想成了世界數學界關注的問題。世界上許多一流的數學家都紛紛參加了四色猜想的大會戰。1878~1880年兩年間,著名的律師兼數學家肯普和泰勒兩人分別提交了證明四色猜想的論文,宣布證明了四色定理,大家都認為四色猜想從此也就解決了。
肯普的證明是這樣的:首先指出如果沒有一個國家包圍其他國家,或沒有三個以上的國家相遇於一點,這種地圖就說是「正規的」(左圖)。如為正規地圖,否則為非正規地圖(右圖)。一張地圖往往是由正規地圖和非正規地圖聯系在一起,但非正規地圖所需顏色種數一般不超過正規地圖所需的顏色,如果有一張需要五種顏色的地圖,那就是指它的正規地圖是五色的,要證明四色猜想成立,只要證明不存在一張正規五色地圖就足夠了。
肯普是用歸謬法來證明的,大意是如果有一張正規的五色地圖,就會存在一張國數最少的「極小正規五色地圖」,如果極小正規五色地圖中有一個國家的鄰國數少於六個,就會存在一張國數較少的正規地圖仍為五色的,這樣一來就不會有極小五色地圖的國數,也就不存在正規五色地圖了。這樣肯普就認為他已經證明了「四色問題」,但是後來人們發現他錯了。
不過肯普的證明闡明了兩個重要的概念,對以後問題的解決提供了途徑。第一個概念是「構形」。他證明了在每一張正規地圖中至少有一國具有兩個、三個、四個或五個鄰國,不存在每個國家都有六個或更多個鄰國的正規地圖,也就是說,由兩個鄰國,三個鄰國、四個或五個鄰國組成的一組「構形」是不可避免的,每張地圖至少含有這四種構形中的一個。
肯普提出的另一個概念是「可約」性。「可約」這個詞的使用是來自肯普的論證。他證明了只要五色地圖中有一國具有四個鄰國,就會有國數減少的五色地圖。自從引入「構形」,「可約」概念後,逐步發展了檢查構形以決定是否可約的一些標准方法,能夠尋求可約構形的不可避免組,是證明「四色問題」的重要依據。但要證明大的構形可約,需要檢查大量的細節,這是相當復雜的。
11年後,即1890年,在牛津大學就讀的年僅29歲的赫伍德以自己的精確計算指出了肯普在證明上的漏洞。他指出肯普說沒有極小五色地圖能有一國具有五個鄰國的理由有破綻。不久,泰勒的證明也被人們否定了。人們發現他們實際上證明了一個較弱的命題——五色定理。就是說對地圖著色,用五種顏色就夠了。後來,越來越多的數學家雖然對此絞盡腦汁,但一無所獲。於是,人們開始認識到,這個貌似容易的題目,其實是一個可與費馬猜想相媲美的難題。
進入20世紀以來,科學家們對四色猜想的證明基本上是按照肯普的想法在進行。1913年,美國著名數學家、哈佛大學的伯克霍夫利用肯普的想法,結合自己新的設想;證明了某些大的構形可約。後來美國數學家富蘭克林於1939年證明了22國以下的地圖都可以用四色著色。1950年,有人從22國推進到35國。1960年,有人又證明了39國以下的地圖可以只用四種顏色著色;隨後又推進到了50國。看來這種推進仍然十分緩慢。
高速數字計算機的發明,促使更多數學家對「四色問題」的研究。從1936年就開始研究四色猜想的海克,公開宣稱四色猜想可用尋找可約圖形的不可避免組來證明。他的學生丟雷寫了一個計算程序,海克不僅能用這程序產生的數據來證明構形可約,而且描繪可約構形的方法是從改造地圖成為數學上稱為「對偶」形著手。
他把每個國家的首都標出來,然後把相鄰國家的首都用一條越過邊界的鐵路連接起來,除首都(稱為頂點)及鐵路(稱為弧或邊)外,擦掉其他所有的線,剩下的稱為原圖的對偶圖。到了六十年代後期,海克引進一個類似於在電網路中移動電荷的方法來求構形的不可避免組。在海克的研究中第一次以頗不成熟的形式出現的「放電法」,這對以後關於不可避免組的研究是個關鍵,也是證明四色定理的中心要素。
電子計算機問世以後,由於演算速度迅速提高,加之人機對話的出現,大大加快了對四色猜想證明的進程。美國伊利諾大學哈肯在1970年著手改進「放電過程」,後與阿佩爾合作編制一個很好的程序。就在1976年6月,他們在美國伊利諾斯大學的兩台不同的電子計算機上,用了1200個小時,作了100億判斷,終於完成了四色定理的證明,轟動了世界。
這是一百多年來吸引許多數學家與數學愛好者的大事,當兩位數學家將他們的研究成果發表的時候,當地的郵局在當天發出的所有郵件上都加蓋了「四色足夠」的特製郵戳,以慶祝這一難題獲得解決。
「四色問題」的被證明僅解決了一個歷時100多年的難題,而且成為數學史上一系列新思維的起點。在「四色問題」的研究過程中,不少新的數學理論隨之產生,也發展了很多數學計算技巧。如將地圖的著色問題化為圖論問題,豐富了圖論的內容。不僅如此,「四色問題」在有效地設計航空班機日程表,設計計算機的編碼程序上都起到了推動作用。
不過不少數學家並不滿足於計算機取得的成就,他們認為應該有一種簡捷明快的書面證明方法。直到現在,仍由不少數學家和數學愛好者在尋找更簡潔的證明方法。
3.史上和質數有關的數學猜想中,最著名的當然就是「哥德巴赫猜想」了。
1742年6月7日,德國數學家哥德巴赫在寫給著名數學家歐拉的一封信中,提出了兩個大膽的猜想:
一、任何不小於6的偶數,都是兩個奇質數之和;
二、任何不小於9的奇數,都是三個奇質數之和。
這就是數學史上著名的「哥德巴赫猜想」。顯然,第二個猜想是第一個猜想的推論。因此,只需在兩個猜想中證明一個就足夠了。
同年6月30日,歐拉在給哥德巴赫的回信中, 明確表示他深信哥德巴赫的這兩個猜想都是正確的定理,但是歐拉當時還無法給出證明。由於歐拉是當時歐洲最偉大的數學家,他對哥德巴赫猜想的信心,影響到了整個歐洲乃至世界數學界。從那以後,許多數學家都躍躍欲試,甚至一生都致力於證明哥德巴赫猜想。可是直到19世紀末,哥德巴赫猜想的證明也沒有任何進展。證明哥德巴赫猜想的難度,遠遠超出了人們的想像。有的數學家把哥德巴赫猜想比喻為「數學王冠上的明珠」。
我們從6=3+3、8=3+5、10=5+5、……、100=3+97=11+89=17+83、……這些具體的例子中,可以看出哥德巴赫猜想都是成立的。有人甚至逐一驗證了3300萬以內的所有偶數,竟然沒有一個不符合哥德巴赫猜想的。20世紀,隨著計算機技術的發展,數學家們發現哥德巴赫猜想對於更大的數依然成立。可是自然數是無限的,誰知道會不會在某一個足夠大的偶數上,突然出現哥德巴赫猜想的反例呢?於是人們逐步改變了探究問題的方式。
1900年,20世紀最偉大的數學家希爾伯特,在國際數學會議上把「哥德巴赫猜想」列為23個數學難題之一。此後,20世紀的數學家們在世界范圍內「聯手」進攻「哥德巴赫猜想」堡壘,終於取得了輝煌的成果。
20世紀的數學家們研究哥德巴赫猜想所採用的主要方法,是篩法、圓法、密率法和三角和法等等高深的數學方法。解決這個猜想的思路,就像「縮小包圍圈」一樣,逐步逼近最後的結果。
1920年,挪威數學家布朗證明了定理「9+9」,由此劃定了進攻「哥德巴赫猜想」的「大包圍圈」。這個「9+9」是怎麼回事呢?所謂「9+9」,翻譯成數學語言就是:「任何一個足夠大的偶數,都可以表示成其它兩個數之和,而這兩個數中的每個數,都是9個奇質數之積。」 從這個「9+9」開始,全世界的數學家集中力量「縮小包圍圈」,當然最後的目標就是「1+1」了。
1924年,德國數學家雷德馬赫證明了定理「7+7」。很快,「6+6」、「5+5」、「4+4」和「3+3」逐一被攻陷。1957年,我國數學家王元證明了「2+3」。1962年,中國數學家潘承洞證明了「1+5」,同年又和王元合作證明了「1+4」。1965年,蘇聯數學家證明了「1+3」。
1966年,我國著名數學家陳景潤攻克了「1+2」,也就是:「任何一個足夠大的偶數,都可以表示成兩個數之和,而這兩個數中的一個就是奇質數,另一個則是兩個奇質數的積。」這個定理被世界數學界稱為「陳氏定理」。
由於陳景潤的貢獻,人類距離哥德巴赫猜想的最後結果「1+1」僅有一步之遙了。但為了實現這最後的一步,也許還要歷經一個漫長的探索過程。有許多數學家認為,要想證明「1+1」,必須通過創造新的數學方法,以往的路很可能都是走不通的。