誰創造的綴術
⑴ 圓周率是誰發明的
圓周率不是某一個人發明的,而是在歷史的進程中,不同的數學家經過無數次的版演算得出的。
古希權臘大數學家阿基米德(公元前287–212 年) 開創了人類歷史上通過理論計算圓周率近似值的先河。
公元480年左右,南北朝時期的數學家祖沖之進一步得出精確到小數點後7位的結果,給出不足近似值3.1415926和過剩近似值3.1415927,還得到兩個近似分數值。
(1)誰創造的綴術擴展閱讀:
圓周率(Pi)是圓的周長與直徑的比值,一般用希臘字母π表示,是一個在數學及物理學中普遍存在的數學常數。π也等於圓形之面積與半徑平方之比。是精確計算圓周長、圓面積、球體積等幾何形狀的關鍵值。 在分析學里,π可以嚴格地定義為滿足sin x = 0的最小正實數x。
圓周率用希臘字母 π(讀作pài)表示,是一個常數(約等於3.141592654),是代表圓周長和直徑的比值。它是一個無理數,即無限不循環小數。在日常生活中,通常都用3.14代表圓周率去進行近似計算。而用十位小數3.141592654便足以應付一般計算。
⑵ 發明家有誰
外國的抄 愛迪生 瓦特 諾貝爾襲
中國古代 畢升 張衡 蔡倫
近代 張稼先 袁隆平 侯德榜
http://..com/question/6548115.html
⑶ 祖沖之在數學領域最突出的成就是 [ ] A.造出了千里船B.利用並發展了前人創造的「割圓術
祖沖之在數學領域最突出的成就是(D、求得比較精確的圓周率)。
祖沖之一生鑽研自然科學專,其主要貢獻在屬數學、天文歷法和機械製造三方面。他在劉徽開創的探索圓周率的精確方法的基礎上。
首次將「圓周率」精算到小數第七位,即在3.1415926和3.1415927之間,他提出的「祖率」對數學的研究有重大貢獻。直到16世紀,阿拉伯數學家阿爾·卡西才打破了這一紀錄。
(3)誰創造的綴術擴展閱讀:
祖沖之在圓周率方面的研究,有著積極的現實意義,他的研究適應了當時生產實踐的需要。他親自研究度量衡,並用最新的圓周率成果修正古代的量器容積的計算。
古代有一種量器叫做「 釜 」,一般的是一尺深,外形呈圓柱狀,祖沖之利用他的圓周率研究,求出了精確的數值。
祖沖之還重新計算了漢朝劉歆所造的「律嘉量」, 利用「祖率」校正了數值。以後,人們製造量器時就採用了祖沖之的「祖率」數值。
⑷ 圓周率是誰發明的
圓周率是指平面上圓的周長與直徑之比。
祖沖之通過艱苦的努力,他在世界數學史上第一次將圓周率(Л)值計算到小數點後七位,即3.1415926到3.1415927之間。他提出約率22/7和密率355/113,這一密率值是世界上最早提出的,比歐洲早一千多年,所以有人主張叫它「祖率」。他將自己的數學研究成果匯集成一部著作,名為《綴術》,唐朝國學曾經將此書定為數學課本。他編制的《大明歷》,第一次將「歲差」引進歷法。提出在391年中設置144個閆月。推算出一回歸年的長度為365.24281481日,誤差只有50秒左右。他不僅是一位傑出的數學家和天文學家,而且還是一位傑出的機械專家。重新造出早已失傳的指南車、千里船等巧妙機械多種。此外,他對音樂也有研究。著作有《釋論語》、《釋孝經》、《易義》、《老子義》、《莊子義》及小說《述異記》等,均早已遺失。
⑸ 魏晉南北朝時期,最厲害的人物是誰呢
魏晉南北朝最厲害的人祖沖之。
祖沖之是我國古代最偉大的科學家,應該沒有之一。
三,祖沖之是偉大的發明家
他發明了裝在戰車上的指南車,不管戰車怎樣運動,車上的銅人總是指向北方。
他發明了“千里船”,一天能夠在水面上前進100多里。這在當時已經是很快很快的速度了。
他還發明了水碓磨,運用水力推動石磨碾米。
他還設計製造過兩種計時器:漏壺和欹器。
說他是一個偉大的發明家一點不為過。
四,祖沖之是文學家和音樂家
祖沖之的成就不僅限於自然科學方面,他還精通樂理.對於音律很有研究。
祖沖之又著有《易義》《老子義》《莊子義》《釋論語》等關於哲學的書籍,都已經失傳了。文學作品方面他著有《述異記》,在《太平御覽》等書中可以看到這部。
這不是妥妥的文藝復興巨頭達芬奇一樣的存在嗎?
1960年,蘇聯科學家們在研究了月球背面的照片以後,用世界上一些最有貢獻的科學家的名字,來命名那上面的山谷,其中有一座環形山被命名為“祖沖之環形山”。
⑹ 世界上有哪些數學發明
早的數學專著,它是1984年由考古學家在湖北江陵張家山出土的漢代竹簡中發現的。《周髀算經》編纂於西漢末年,它雖然是一本關於「蓋天說」的天文學著作,但是包括兩項數學成就——(1)勾股定理的特例或普遍形式(「若求邪至日者,以日下為句,日高為股,句股各自乘,並而開方除之,得邪至日。」——這是中國最早關於勾股定理的書面記載);(2)測太陽高或遠的「陳子測日法」。
《九章算術》在中國古代數學發展過程中佔有非常重要的地位。它經過許多人整理而成,大約成書於東漢時期。全書共收集了246個數學問題並且提供其解法,主要內容包括分數四則和比例演算法、各種面積和體積的計算、關於勾股測量的計算等。在代數方面,《九章算術》在世界數學史上最早提出負數概念及正負數加減法法則;現在中學講授的線性方程組的解法和《九章算術》介紹的方法大體相同。注重實際應用是《九章算術》的一個顯著特點。該書的一些知識還傳播至印度和阿拉伯,甚至經過這些地區遠至歐洲。
南北朝是中國古代數學的蓬勃發展時期,計有《孫子算經》、《夏侯陽算經》、《張丘建算經》等算學著作問世。
祖沖之、祖暅父子的工作在這一時期最具代表性。他們著重進行數學思維和數學推理,在前人劉徽《九章算術注》的基礎上前進了一步。根據史料記載,其著作《綴術》(已失傳)取得如下成就:①圓周率精確到小數點後第六位,得到3.1415926<π<3.1415927,並求得π的約率為22/7,密率為355/113,其中密率是分子分母在1000以內的最佳值;歐洲直到16世紀德國人鄂圖(Otto)和荷蘭人安托尼茲(Anthonisz)才得出同樣結果。②祖暅在劉徽工作的基礎上推導出球體體積公式,並提出二立體等高處截面積相等則二體體積相等(「冪勢既同則積不容異」)定理;歐洲17世紀義大利數學家卡瓦列利(Cavalieri)才提出同一定理……祖氏父子同時在天文學上也有一定貢獻。
隋唐時期的主要成就在於建立中國數學教育制度,這大概主要與國子監設立算學館及科舉制度有關。在當時的算學館《算經十書》成為專用教材對學生講授。《算經十書》收集了《周髀算經》、《九章算術》、《海島算經》等10部數學著作。所以當時的數學教育制度對繼承古代數學經典是有積極意義的。
公元600年,隋代劉焯在制訂《皇極歷》時,在世界上最早提出了等間距二次內插公式;唐代僧一行在其《大衍歷》中將其發展為不等間距二次內插公式。
從公元11世紀到14世紀的宋、元時期,是以籌算為主要內容的中國古代數學的鼎盛時期,其表現是這一時期涌現許多傑出的數學家和數學著作。中國古代數學以宋、元數學為最高境界。在世界范圍內宋、元數學也幾乎是與阿拉伯數學一道居於領先集團的。
賈憲在《黃帝九章演算法細草》中提出開任意高次冪的「增乘開方法」,同樣的方法至1819年才由英國人霍納發現;賈憲的二項式定理系數表與17世紀歐洲出現的「巴斯加三角」是類似的。遺憾的是賈憲的《黃帝九章演算法細草》書稿已佚。
秦九韶是南宋時期傑出的數學家。1247年,他在《數書九章》中將「增乘開方法」加以推廣,論述了高次方程的數值解法,並且例舉20多個取材於實踐的高次方程的解法(最高為十次方程)。16世紀義大利人菲爾洛才提出三次方程的解法。另外,秦九韶還對一次同餘式理論進行過研究。
李冶於1248年發表《測圓海鏡》,該書是首部系統論述「天元術」(一元高次方程)的著作,在數學史上具有里程碑意義。尤其難得的是,在此書的序言中,李冶公開批判輕視科學實踐活動,將數學貶為「賤技」、「玩物」等長期存在的士風謬論。
公元1261年,南宋楊輝(生卒年代不詳)在《詳解九章演算法》中用「垛積術」求出幾類高階等差級數之和。公元1274年他在《乘除通變本末》中還敘述了「九歸捷法」,介紹了籌算乘除的各種運演算法。公元1280年,元代王恂、郭守敬等制訂《授時歷》時,列出了三次差的內插公式。郭守敬還運用幾何方法求出相當於現在球面三角的兩個公式。
公元1303年,元代朱世傑(生卒年代不詳)著《四元玉鑒》,他把「天元術」推廣為「四元術」(四元高次聯立方程),並提出消元的解法,歐洲到公元1775年法國人別朱(Bezout)才提出同樣的解法。朱世傑還對各有限項級數求和問題進行了研究,在此基礎上得出了高次差的內插公式,歐洲到公元1670年英國人格里高利(Gregory)和公元1676一1678年間牛頓(Newton)才提出內插法的一般公式。
14世紀中、後葉明王朝建立以後,統治者奉行以八股文為特徵的科舉制度,在國家科舉考試中大幅度消減數學內容,於是自此中國古代數學便開始呈現全面衰退之勢。
明代珠算開始普及於中國。1592年程大位編撰的《直指演算法統宗》是一部集珠算理論之大成的著作。但是有人認為,珠算的普及是抑制建立在籌算基礎之上的中國古代數學進一步發展的主要原因之一。
由於演算天文歷法的需要,自16世紀末開始,來華的西方傳教士便將西方一些數學知識傳入中國。數學家徐光啟向義大利傳教士利馬竇學習西方數學知識,而且他們還合譯了《幾何原本》的前6卷(1607年完成)。徐光啟應用西方的邏輯推理方法論證了中國的勾股測望術,因此而撰寫了《測量異同》和《勾股義》兩篇著作。鄧玉函編譯的《大測》[2卷]、《割圓八線表》[6卷]和羅雅谷的《測量全義》[10卷]是介紹西方三角學的著作。
⑺ π是誰發明的
祖沖之發明的;祖沖之在數學上的傑出成就,是關於圓周率的計算.秦漢以前,人們以徑一周三做為圓周率,這就是古率.後來發現古率誤差太大,圓周率應是圓徑一而周三有餘,不過究竟余多少,意見不一。
直到三國時期,劉徽提出了計算圓周率的科學方法--割圓術,用圓內接正多邊形的周長來逼近圓周長.劉徽計算到圓內接96邊形, 求得π=3.14,並指出,內接正多邊形的邊數越多,所求得的π值越精確。
祖沖之在前人成就的基礎上,經過刻苦鑽研,反復演算,求出π在3.1415926與3.1415927之間.並得出了π分數形式的近似值,取為約率 ,取為密率,其中取六位小數是3.141929,它是分子分母在1000以內最接近π值的分數。
拓展資料
圓周率(Pai)是圓的周長與直徑的比值,一般用希臘字母π表示,是一個在數學及物理學中普遍存在的數學常數。π也等於圓形之面積與半徑平方之比。是精確計算圓周長、圓面積、球體積等幾何形狀的關鍵值。 在分析學里,π可以嚴格地定義為滿足sin x = 0的最小正實數x。
圓周率用字母 π(讀作pài)表示,是一個常數(約等於3.141592654),是代表圓周長和直徑的比值。它是一個無理數,即無限不循環小數。
在日常生活中,通常都用3.14代表圓周率去進行近似計算。而用十位小數3.141592654便足以應付一般計算。即使是工程師或物理學家要進行較精密的計算,充其量也只需取值至小數點後幾百個位。