向量合同
㈠ 向量组等价 等价矩阵 相似矩阵 合同矩阵 的关系
向量组不等价吗? 虽然列不等价,但是行等价啊
㈡ 线代题 怎么判断两个矩阵是否合同
矩阵合同的主要判别法:
设A,B均为复数域上的阶对称矩阵,则A与B在复数域上合同等价于A与B的秩相同。
设A,B均为实数域上的n阶对称矩阵,则A与B在实数域上合同等价于A与B有相同的正、负惯性指数(即正、负的个数对应相等)。
合同关系是一个等价关系,也就是说满足:
1、反身性:任意矩阵都与其自身合同;
2、对称性:A合同于B,则可以推出B合同于A。
(2)向量合同扩展阅读:
线性(linear)指量与量之间按比例、成直线的关系,在数学上可以理解为一阶导数为常数的函数。
非线性(non-linear)则指不按比例、不成直线的关系,一阶导数不为常数。
线性代数起源于对二维和三维直角坐标系的研究。在这里,一个向量是一个有方向的线段,由长度和方向同时表示。这样向量可以用来表示物理量,比如力,也可以和标量做加法和乘法。这就是实数向量空间的第一个例子。
现代线性代数已经扩展到研究任意或无限维空间。一个维数为n的向量空间叫做n维空间。在二维和三维空间中大多数有用的结论可以扩展到这些高维空间。尽管许多人不容易想象n维空间中的向量,这样的向量(即n元组)用来表示数据非常有效。
由于作为n元组,向量是n个元素的“有序”列表,大多数人可以在这种框架中有效地概括和操纵数据。
比如,在经济学中可以使用 8 维向量来表示 8 个国家的国民生产总值(GNP)。当所有国家的顺序排定之后,比如(中国、美国、英国、法国、德国、西班牙、印度、澳大利亚),可以使用向量(v1,v2,v3,v4,v5,v6,v7,v8)显示这些国家某一年各自的 GNP。这里,每个国家的 GNP 都在各自的位置上。
作为证明定理而使用的纯抽象概念,向量空间(线性空间)属于抽象代数的一部分,而且已经非常好地融入了这个领域。
一些显著的例子有:不可逆线性映射或矩阵的群,向量空间的线性映射的环。线性代数也在数学分析中扮演重要角色,特别在向量分析中描述高阶导数,研究张量积和可交换映射等领域。
向量空间是在域上定义的,比如实数域或复数域。线性算子将线性空间的元素映射到另一个线性空间(也可以是同一个线性空间),保持向量空间上加法和标量乘法的一致性。所有这种变换组成的集合本身也是一个向量空间。
如果一个线性空间的基是确定的,所有线性变换都可以表示为一个数表,称为矩阵。对矩阵性质和矩阵算法的深入研究(包括行列式和特征向量)也被认为是线性代数的一部分。
㈢ 向量组等价,相似矩阵,矩阵合同,中具有反身性,对称性,传递性,那什么是反身性,对称性,传递性
对等价向量组
反身性:向量组A等价于自身,记为:A~A
对称性:若向量组专属A~向量组B,则向量组B~向量组A
传递性: 若向量组A等价向量组B,向量组B等价向量组C,则向量组A等价向量组C
其他类似
㈣ 矩阵通过合同变换变换出的对角阵对角线上的数字就是特征值吗,由e变换出的C矩阵列向量为特征向量吗
通过合同变换,得到P^TAP=D
对角阵上的数字不一定是特征值,除非P满足正交矩阵
㈤ 线性代数问题 A和B合同 怎么求C 我只知道是用特征向量求 具体怎么做
C应该是有个前提条件的吧,则Ct=C逆,所以可以理解为 C逆AC=B然后就是求相似矩阵的知识了。。。(太久了实在记不起来详细应该怎么算了= =)
㈥ 如果知道同阶矩阵A,B的特征值,A+B的特征值是A和B特征值的和吗
特征值的个数不一定只有一个,故一般说A的特征值之一为x,或x是A的一个特征值,或x是A的特征值之一。
如果它们有A的特征值x对应的特征向量与B的特征值y对应的特征向量相同,比如都是ξ。
那么 Aξ=xξ,B=yξ,此时(A+B)ξ=(x+y)ξ,此时A+B有特征值x+y,对应的特征向量还是ξ。
设A是n阶方阵,如果数λ和n维非零列向量x使关系式Ax=λx成立,那么这样的数λ称为矩阵A特征值,非零向量x称为A的对应于特征值λ的特征向量。式Ax=λx也可写成( A-λE)X=0。这是n个未知数n个方程的齐次线性方程组,它有非零解的充分必要条件是系数行列式| A-λE|=0。
A的对应于特征值λ1=λ2=-2的全部特征向量为x=k1ξ1+k2ξ2(k1,k2不全为零),可见,特征值λ=-2的特征向量空间是二维的。注意,特征值在重根时,特征向量空间的维数是特征根的重数。
(6)向量合同扩展阅读
性质
性质1:n阶方阵A=(aij)的所有特征根为λ1,λ2,…,λn(包括重根)。
性质2:若λ是可逆阵A的一个特征根,x为对应的特征向量,则1/λ 是A的逆的一个特征根,x仍为对应的特征向量。
性质3:若 λ是方阵A的一个特征根,x为对应的特征向量,则λ 的m次方是A的m次方的一个特征根,x仍为对应的特征向量。
性质4:设λ1,λ2,…,λm是方阵A的互不相同的特征值。xj是属于λi的特征向量( i=1,2,…,m),则x1,x2,…,xm线性无关,即不相同特征值的特征向量线性无关[2] 。
㈦ 二次型能用特征值、特征向量来化标准形,原因在于相似变换与合同变换本质上相同
一般的相似变换不是合同变换, 而二次型恰好可以用正交相似变换对角化, 这既是相似变换又是合同变换.
㈧ 什么叫正交变换为什么要正交变换
在线性代数中,正交变换是线性变换的一种,它从实内积空间V映射到V自身,且内保证变换前容后内积不变。
原因:
因为向量的模长与夹角都是用内积定义的,所以正交变换前后一对向量各自的模长和它们的夹角都不变。特别地,标准正交基经正交变换后仍为标准正交基。
在有限维空间中,正交变换在标准正交基下的矩阵表示为正交矩阵,其所有行和所有列也都各自构成V的一组标准正交基。因为正交矩阵的行列式只可能为+1或−1,故正交变换的行列式为+1或−1。
行列式为+1和−1的正交变换分别称为第一类的(对应旋转变换)和第二类的(对应瑕旋转变换)。可见,欧几里得空间中的正交变换只包含旋转、反射及它们的组合(即瑕旋转)。
做内积之值。
㈨ 线性代数中,怎么判断两个矩阵是否合同
矩阵合同的判别法:
设A,B均为复数域上的n阶对称矩阵,则A与B在复数域上内合同等价于A与B的秩相容同。
设A,B均为实数域上的n阶对称矩阵,则A与B在实数域上合同等价于A与B有相同的正、负惯性指数(即正、负特征值的个数相等)。
(9)向量合同扩展阅读:
合同矩阵发展史
1、1855 年,埃米特证明了其他数学家发现的一些矩阵类的特征根的特殊性质,如现在称为埃米特矩阵的特征根性质等。后来 ,克莱伯施、布克海姆等证明了对称矩阵的特征根性质。泰伯引入矩阵的迹的概念并得出了一些有关的结论。
2、在矩阵论的发展史上,弗罗伯纽斯的贡献是不可磨灭的。他讨论了最小多项式问题,引进了矩阵的秩、不变因子和初等因子、正交矩阵、矩阵的相似变换、合同矩阵等概念,以合乎逻辑的形式整理了不变因子和初等因子的理论,并讨论了正交矩阵与合同矩阵的一些重要性质。
3、1854年,约当研究了矩阵化为标准型的问题。 1892 年,梅茨勒引进了矩阵的超越函数概念并将其写成矩阵的幂级数的形式。
㈩ 为什么判断2个矩阵合同是看正负惯性指数是否相同,特征值的正负个数是否相同
合同变换是对行做一次变换就要对列做相同得变换。
对于可对角化矩阵,经过合同变换最终是化成对角矩阵,所以比较2矩阵是否合同要看这2矩阵得对角化矩阵是否合同。
而2对角化矩阵再做合同变换只能化为单位得不能换正负号,所以2对角化矩阵合同充要条件是正负惯性系数相同。
求矩阵的全部特征值和特征向量的方法如下:
第一步:计算的特征多项式;
第二步:求出特征方程的全部根,即为的全部特征值;
第三步:对于的每一个特征值,求出齐次线性方程组的一个基础解系,则的属于特征值的全部特征向量。
(10)向量合同扩展阅读:
若是的属于的特征向量,则也是对应于的特征向量,因而特征向量不能由特征值惟一确定.反之,不同特征值对应的特征向量不会相等,亦即一个特征向量只能属于一个特征值。
矩阵有n个不同的特征向量;特征向量重根的重数等于基础解系的个数。对于第二个充要条件,则需要出现二重以上的重特征值可验证(一重相当于没有重根)。