矩阵相似与合同
『壹』 矩阵相似与矩阵合同有什么区别
矩阵相似与矩阵合同具体的不同点在于:
矩阵相似的例子中,P-1AP=B;针对方阵而言;秩相等为必要条件;本质是二者有相等的不变因子;可看作是同一线性变换在不同基下的矩阵;矩阵相似必等价,但等价不一定相似。
2. 矩阵合同的例子中,CTAC=B;针对方阵而言;秩相等为必要条件;本质是秩相等且正惯性指数相等,即标准型相同;可通过二次型的非退化的线性替换来理解;矩阵合同必等价,但等价不一定合同。
3. 总结:矩阵的相似和矩阵的合同都是由线性空间中坐标系的转换引起的。我们在线性空间中定义矩阵和向量的乘法,并将矩阵理解成线性空间中“运动”的施加,变换坐标系之后,同一个“运动”在不同坐标系下是相似的关系。我们在线性空间中定义向量的内积(或者说双线性型),同一个双线性型运算在不同坐标系下相差合同矩阵。之所以要换坐标系,就是为了在最简单的坐标系下看清问题的本质。
。
在线性代数,特别是二次型理论中,常常用到矩阵间的合同关系。一般在线代问题中,研究合同矩阵的场景是在二次型中二次型用的矩阵是实对称矩阵。两个实对称矩阵合同的充要条件是它们的正负惯性指数相同。由这个条件可以推知,合同矩阵等秩。
2.性质:
合同关系是一个等价关系,就是说满足:1、反身性:任意矩阵都与其自身合同;2、 对称性:A合同 B,则可以推出B合同于A;3、 传递性:A合同于B,B合同于C,则可以推出A合同 C;4、合同矩阵的秩相同。
3.矩阵合同的主要判别法:
(1)B均为复数域上的n阶对称矩阵,则A与B在复数域上合同等价于A与B的秩相同.
(2)B均为实数域上的n阶对称矩阵,则A与B在实数域上合同等价于A与B有相同的正、负惯性指数(即正、负的个数对应相等)。
『贰』 合同矩阵和相似矩阵的区别
相似,p^(-1)AP=B, 则称A相似B;
合同, XT AX=B,则称A,B合同;
简而言之,相似就是两个矩阵经过初等变换能从A变到B,此时有相同的秩,特征值;
合同就是两个矩阵有相同的正负惯性指数来进行判断
『叁』 矩阵的等价相似和合同三者有何区别
1、它们的概念不同
等价概念:若矩阵A可以经过有限次初等变换化为B,则称矩阵A与B等价,记为A≌B。
合同概念概念:两个n阶方阵A_B,若存在可逆矩阵P,使得A≌Bp"AP=B成立,则称A,B合同,记作A≌B该过程成为合同变换。
相似概念: n阶方阵AB,若存在一个可逆矩阵P使得B=P="I4P成立,则称矩阵AB相似,记为A~B。
2、它们的条件不同
矩阵等价:同型矩阵而言,般与初等变换有关,秩是矩阵等价的不变量,同次,两同型矩阵相似的。
矩阵相似:针对方阵而言。秩相等是必要条件,本质是二者有相等的不变因子。
矩阵合同:针对方阵而言,一般是对称矩阵,秩相等是必需条件,本质是秩相等且存在惯性指数相等,即标准型同。
3、它们的充分必要条件不同
矩阵等价的充要条件:AB同型,且人r(A)=r(B)A≌B={存在可逆矩阵P和Q,使得PAQ=B成立}
矩阵合同的充要条件:矩阵A.B均为实对称矩阵,则A≌B≈二次型xAx与x"Bx有相等的E负惯性指数,即有相同的标准型。
矩阵相似的充分条件及充要条件:充分条件:矩阵AB有相同的不变因子或行列式因子。充要条件: A~B口(2E-A)≌(AE-B)。
『肆』 如何判断矩阵合同、相似、等价
1、矩阵等价
矩阵A与B等价必须具备的两个条件:
(1)矩阵A与B必为同型矩阵(不要求是方阵);
(2)存在s阶可逆矩阵p和n阶可逆矩阵Q, 使B= PAQ。
2、矩阵A与B合同
必须同时具备的两个条件:
(1) 矩阵A与B不仅为同型矩阵而且是方阵;
(2) 存在n阶矩阵P: P^TAP= B。
3、矩阵A与B相似
必须同时具备两个条件:
(1)矩阵A与B不仅为同型矩阵,而且是方阵;
(2)存在n阶可逆矩阵P,使得P^-1AP= B。
(4)矩阵相似与合同扩展阅读
矩阵的相似,实际上两个相似矩阵描述的是同一个线性变换,只是在不同基底下的坐标表示。相似矩阵的特征值相同,秩也相同,方阵对应的行列式也相同。
判断两个矩阵是否相似,一般的题型是看两个矩阵能否相似于同一对角阵。同时两个矩阵相似,其对应的以矩阵为变量的两个函数也相似。
矩阵的合同是在二次型的背景下提出来的,理解合同就针对二次型里的对称阵,给一个二次型,我们可以写成矩阵表达形式,做一系列的可逆变换,新得到的表示二次型的矩阵,就是与原矩阵合同的新矩阵。
对于对称阵,两矩阵合同的重要条件是正负惯性指数相同,也就是正特征值的个数,负特征值的个数相同。
矩阵相似与否和合同与否没有直接关系,但在我们的考试当中,一般考察对称阵,在对称阵的前提下,矩阵相似一定合同,合同不一定相似。相似要求特征值一样,合同只要求特征值的正负性一样。
『伍』 矩阵等价,相似,合同之间的区别和联系
一、矩阵等价、相似和合同之间的区别:
1、等价,相似和合同三者都是等价关系。
2、矩阵相似或合同必等价,反之不一定成立。
3、矩阵等价,只需满足两矩阵之间可以通过一系列可逆变换,也即若干可逆矩阵相乘得到。
4、矩阵相似,则存在可逆矩阵P使得,AP=PB。
5、矩阵合同,则存在可逆矩阵P使得,P^TAP=B。
6、当上述矩阵P是正交矩阵时,即P^T=P^(-1),则有A,B之间既满足相似,又满足合同关系。
二、矩阵等价、相似、合同之间联系:
1、矩阵等秩是相似、合同、等价的必要条件,相似、合同、等价是等秩的充分条件。
2、矩阵等价是相似、合同的必要条件,相似、合同是等价的充分条件。
3、 矩阵相似、合同之间没有充要关系,存在相似但不合同的矩阵,也存在合同但不相似的矩阵。
4、总结起来就是:相似=>等价,合同=>等价,等价=>等秩。
(5)矩阵相似与合同扩展阅读:
矩阵等价:
1、同型矩阵而言。
2、一般与初等变换有关。
3、 秩是矩阵等价的不变量,其次两同型矩阵相似的本质是秩相等。
矩阵相似:
1、针对方阵而言。
2、秩相等是必要条件。
3、本质是二者有相等的不变因子。
矩阵合同:
1、针对方阵而言,一般是对称矩阵。
2、秩相等是必需条件。
3、本质是秩相等且正惯性指数相等,即标准型相同。
通过上述的对比可知,等价关系是三种关系中条件最弱的,合同与相似是特堵的等价关系,若两个矩阵相似或合同,则这两个矩阵一定等价,反之不成立,相似与合同不能互相推导,但是如果两个实对称矩阵式相似的,那一定是合同的。
『陆』 矩阵的等价相似和合同三者有何区别
1、等价(只有秩相同)–>合同(秩和正负惯性指数相同)–>相似(秩,正负惯性指数,特征值均相同),矩阵亲密关系的一步步深化。
2、相似矩阵必为等价矩阵,但等价矩阵未必为相似矩阵 ,PQ=EPQ=E的等价矩阵是相似矩阵。
3、合同矩阵必为等价矩阵,等价矩阵未必为合同矩阵,正惯性指数相同的等价矩阵是合同矩阵。合同矩阵未必是相似矩阵,相似矩阵未必合同。
4、正交相似矩阵必为合同矩阵,正交合同矩阵必为相似矩阵。如果A与B都是n阶实对称矩阵,且有相同的特征根.则A与B既相似又合同。
(6)矩阵相似与合同扩展阅读:
矩阵切换器技术指标
矩阵切换器根据不同的应用领域,所要求的技术指标也不同。以广电行业为例,为保证终端的显示质量,广电行业将整个信号传输过程,从摄像头开始到电视机为止,都进行了技术指标分配,对模拟矩阵切换和分配。
一般指在多路输入的情况下有多路的输出选择,形成的矩阵结构,将形成M×N的结构称为矩阵切换器,而将M×1的结构称为切换器或选择器,1×M的结构称为分配器。矩阵的原理是利用芯片内部电路的导通与关闭进行接通与关断,并可通过电平进行控制完成信号的选择。
『柒』 矩阵的合同和相似有什么共同与不同
合同或相似矩阵
必有相同的秩,
故必是等价的.
但合同不一定相似,
相似也不一定合同
但正交相似时即合同又相似
『捌』 合同矩阵和相似矩阵的区别
矩阵a,b相似是指存在可逆矩阵p,使得b=p^(-1)ap
而矩阵的合同则是指存在可逆矩阵p,使得b=ptap。
当然矩阵相似不一定是合同的了。
『玖』 相似矩阵和合同矩阵的关系
我今天刚看完书……
相似必合同,合同必等价
等价就是矩阵拥有相同的r,
矩阵合同回,CtAC(Ct为转置)=B,矩阵乘以可逆矩答阵他的r不变,r(B)=r(CtAC)=r(AC)=r(A),等价。同理两矩阵相似一定等价
矩阵相似一定合同,因为两矩阵相似,有相同的特征多项式和特征根,就一定有相同的r,惯性系数一定相同,可以化成相同的标准形,矩阵合同的充要条件是有相同的r和规范形(A、B都有其对应的对角形矩阵,结合定义即可推出,太难打了自己理解谢谢),标准形相等规范形一定相等,所以相似一定合同