当前位置:首页 » 软件设计 » usb设计

usb设计

发布时间: 2020-12-16 12:00:28

Ⅰ 什么是USB,USB电路如何设计

USB即通用串行总线,有USB1.0,USB2.0,现在已经到了USB3.0,不过还没用广泛推广,能向下兼容,专速度据说能属和1394相媲美。
USB电路很简单,就是四线或者五线,只要所用的MCU上有专用接口直接连接即可,想用起来就需要有底层驱动支持了

Ⅱ 单片机如何与USB接口相连接其硬件电路如何设计

数据接收存储技术革新是信号采集处理领域内的一个重要课题。利用这种技术,可以把信号的实时采集和精确处理在时间上分为两个阶段,有利于获得令人更满意的处理结果。在无线数传接收设备中应用数据接收存储方法时,除了要满足数据传输速率和差错控制方面的要求外,还需要考虑如何使设备易于携带、接口简单、使用方便。
传统外设接口技术不但数据传输速率较低,独占中断、I/O地址、DMA通道等计算机系统关键资源,容易造成资源冲突问题,而且使用时繁杂的安装配置手续也给终端用户带来了诸多不便。近年来,USB接口技术迅速发展,新型计算机纷纷对其提供支持。USB2.0是USB技术发展的最新成果,利用USB2.0接口技术开发计算机外设,不但可以借用其差错控制机制[1][6]减轻开发人员的负担、获得高速数据传输能力(480Mb/s),而且可以实现便捷的机箱外即插即用特性,方便终端用户的使用。
1 无线数传接设备总体构成
无线数传接收设备是某靶场测量系统的一个重要组成部分。如图1所示,该设备由遥测接收机利用天线接收经过调制的无线电波信号,解调后形成传输速率为4Mb/s的RS-422电平差分串行数据流。以帧同步字打头的有效数据帧周期性地出现在这些串行数据中。数据转存系统从中提取出有效的数据帧,并在帧同步字后插入利用GPS接收机生成的本地时间信息,用于记录该帧数据被接收到的时间,然后送给主机硬件保存。
在无线数传接收设备中,数据转存系统是实现数据接收存储的关键子系统。下面将详细介绍该系统的硬件实现及工作过程。

2 数据转存系统基本构成及硬件实现
数据转存系统主要由FPGA模块、DSP模块、USB2.0接口芯片构成,各个模块之间的相互关系如图2所示示。图中,4Mb/s的串行数据输入信号SDI已由RS-422差分电平转换为CMOS电平。为突出重点,不太重要的信号连线未在图中绘出。下面分别介绍这几个模块的主要功能。
2.1 FPGA模块实现及春功能
FPGA模块在Altera公司ACEX系列的EP1K30TI144-2芯片中实现。其中主要的功能子模块有:位同步逻辑、帧同步逻辑、授时时钟和译码逻辑。位同步逻辑主要由数字锁相环构成,用于从串行数据输入信号SDI中恢复出位时钟信号。帧同步逻辑从位同步逻辑的输出信号提取帧同步脉冲。两者为DSP利用其同步串行口接收串行数据作好准备。这样,利用一对差分信号线就可以接收同步串行数据,简化了印制电路板的外部接口。授时时钟在DSP和GSP接收机的协助下生成精度为0.1ms的授时信息。译码逻辑用于实现系统互联。
2.2 DSP模块实现及其功能
DSP模块是数据转存系统的主控模块,在T1公司16位定点DSP芯片TMS320F206[4]中实现。在DSP的外部数据空间还配置了32KX16的高速SRAM,可以缓存80余帧数据,用于提高系统的差错控制能力。DSP利用同步串行口接收FPGA送来的同步串行数据,利用异步串口接收GPS接收机送来时间信息(用于初始化FPGA授时时钟),利用外部总线接口访问FPGA授时时钟、外部SRAM、ISP1581的片内寄存器。可以看出DSP模块主要用于完成数据帧的接收、重组以及转存调度等任务。

ISP1581芯片是PHILIPS公司推出的高速USB2.0设备控制器,实现了USB2.0/1.1物理层、协议层,完全符合USB2.0规范,即支持高速(480Mb/s)操作,又支持全速(12Mb/s)操作。ISP1581没有内嵌微处理器,但对微处理器操作了灵活的接口。在上电时,通过配置BUS——CONF、DAO、MODE1、MODE0、DA1引脚电平可以适应绝大多数的微处理器接口类型。例如,通过BUS_CONF/DA0引脚,总线配置可以选择普通处理器模块(Generic Phocessor mode)中分割总线模式(Split Bus Mode);在普通处理器模式下,通过MODE0/DA1引脚可以选择读写选通为8051风格或者Motorola风格。
在数据转存系统中,ISP1581用于处理主机的高速数据传输。它工作在普通处理器接口模式下,采用8051风格的读写选通信号,由DSP芯片TMS320F206控制。两者在选定工作方式下的信号连线如图3所示,图中未画出的信号引脚可以悬空,供电引脚的连接方式在参考资料[2]第46页有简明描述。在FPGA译码逻辑的作用下,ISP1581的片内寄存器被映射在DSP的片外数据空间中。DSP通过8位地址线选择要访问的寄存器,在读写选通信号的控制下,利用16位数据线与选定的寄存器交换数据。在访问ISP1581单字节寄存器时,数据总线高字节内容无关紧要。ISP1581通过中断引脚INT向DSP报告发生的总线事件,利用D+、D-引脚完成与主机的数据交换。
3 数据转存系统的工作过程
系统加电后,当FPGA配置过程结束时,如果有串行数据输入,位同步逻辑和帧同步逻辑便启动同步过程。同时,DSP片内FLASH中复位中断服务程序c_int0()[4]被立即执行,在建立好C语言的工作环境下,它会调用主函数main()。在main()中,需要安排好一系列有先后顺序的初始化工作。其中,ISP1581的初始化过程比较复杂,需要考虑设备采用的供电方式(这里为自供电[6]方式)、插接主机和系统上电的先后次序,并需要与USB总线枚举[1][6]过程相结合。
在FPGA中的位同步逻辑和帧同步逻辑均进入同步状态,且DSP主控模块配合主机完成初始化任务后,即可启动数据的传输过程。下面介绍一下ISP1581的初始化过程及DSP控制的数据帧的接收机转存流程。
3.1 ISP1581的初始化
在初始化过程中,首先需要设置影响ISP1581自身工作方式的一些寄存器,然后与主机端USB系统配合进行,应答来自主机端的设备请求。当数据转存系统板作为USB 2.0设备通过连接器连到主机USB根集线器上的一个端口时,主机便可检测到这一连接,接着给该端口加电,检测设备并激活该端口,向USB设备发送复位信号。设备收到这一复位信号后,即进入缺省状态,此后就能够通过缺省通信通道响应主机端送来的设备请求。主机通过描述符请求(GET_DESCRIPTOR)获得设备端的详细信息,通过设置地址请求(SET_ADDRESS)设置设备地址,通过设置配置请求(SET_CONFIGURATION)选定合适的设备配置。在设备成功响应了这些设备请求之后,就可以与主机通信了。

在响应主机请求的过程中,DSP需要配置ISP1581的端点以实现不同类型的传输通道。根据数据传输速率的要求,除了缺省的控制通道外,系统中实现了一个批传输(bulk)[1]类型的输入通道。这样,ISP1581就可以像FIFO一样方便地从数据转存系统向主机传输数据,而且具有差错控制能力,简化了设备端软件设计的复杂性。
3.2 数据帧的接收转存过程
系统正常工作时,需要与主机端程序相互配合。主要端需要开发者实现的程序包括设备驱动程序和应用程序。在Windows 2000操作系统下,USB设备驱动程序为WDM模型的驱动程序,开发环境DriverStudio为WDM型驱动程序提供了框架结构,使得驱动开发变得非常容易(参见参考文献[5]第八、九、十章)。驱动程序接收应用程序的请求,利用USB总线驱动程序(US-BD)和主机控制器驱动程序(HCD)通过主机控制器安排USB总线事务,设备端则根据这些事务调度相应的数据帧的传输。关于主机端口如何安排总线事务可以查阅参考文献[1]。以下着重介绍设备端数据的调度过程。
数据帧的接收转存过程主要由DSP负责,DSP在外部SRAM中建立了一个数据帧的队列,如图4所示。系统主要工作在中断驱动模式下,与同步串行口相关的中断服务程序负责建立队列的尾部,对应于ISP1581中断引脚INT的中断服务程序负责建立队列的头部。
当以帧同步字打头的一帧数据以串行位流的形式到来时,FPGA产生的帧同步脉冲可以直接启动DSP同步串行口接收数据,该同步脉冲同时以中断方式通知DSP为一帧数据的接收做好准备。DSP接到通知后,首先检查外部SRAM中是否有足够的空间容纳一帧数据。如果没有空间,则丢弃当前数据帧(根据设计,这种情况是很少见的);如果有空间,则为当前数据帧保留足够的空间。接着在帧起始位置填写帧步字,读取授时时钟的当前值并填写在帧同步字后。这样,一个新的数据帧(图4中数据帧F_N)就建立了,但是并没有加入到队列中,而是要等待来自同步串行口的后继数据嵌入该帧中后再加入到队列中。
同步串行口的接收缓冲区在接收到若干字(由初始化时的设置决定)后,会向DSP提出中断请求。在中断服务程序中,DSP读取接收缓冲区中的内容,并将其填入上述新开辟的帧F_N中。在一帧数据接收完毕后,就将该帧添加到队列的尾部,表示该帧数据已经准备好(图4中数据帧F_R),可以通过ISP1581送给主机硬件保存。

DSP在查询到队列中有已经准备好的数据帧存在时,就设置ISP1581的端点索引寄存器(Endpoint Index Register)使其指向初始化时配置的批传输输入端点,然后将队列首帧数据通过ISP1581的数据端口寄存器(Data Port Register)填写在端点缓冲区中。在端点缓冲区被填满后,它就自动生效。在不能填满端点缓冲区的情况下,可以通过设置控制功能寄存器(Control Function Register)的VENDP位[2]强制该端点缓冲区生效。端点缓冲区生效后,在USB总线上下一IN令牌到来时,该端点缓冲区中的数据就通过USB总线传输到主机中。主机成功接收到数据后,会给ISP1581以ACK应答。能够通过INT引脚报告给DSP,DSP就可以继续往端点中填写该帧其余数据。
在队列首帧数据被成功转移到主机后,DSP就丢弃首帧数据。如果队列在还有数据帧,则将次首帧作为首帧,继续前述传输过程;如果没有要传输的数据帧,则为队列首帧指针Head_Ptr赋空值(NULL),等待新的数据帧的到来。
USB2.0是计算机外设接口技术发展的最新成功,具有广阔的应用前景。本文介绍了PHILIPS公司USB2.0接口芯片ISP1581在无线数据接收设备中的应用。高性能、便携化的无线数据传接收设备。其在靶场实弹试验中受到了用户的好评。

PC机的RS-232C串行口是使用最多的接口之一。因此,4串口、8串口等以增加串口数量为目的的ISA总线卡产品大量问世。一般串口应用只是使用了RXD和TXD两条传输线和地线所构成的串口的最基本的应用条件,而本文介绍一个利用PC机的RS-232串口加上若干电路来实现多串口需求的接口电路。
1.PC机串口的RTS和DTR及扩展电路
RTS和DTR是PC机中8250芯片的MODEM控制寄存器的两个输出引角D1和D0位,口地址为COM1的是3FCH,口地址为COM2的是2FCH。我们可以利用对MODEM控制寄存器3FCH或2FCH的写操作对其进行控制。从而利用该操作和扩展电路实现对TXD和RXD进行多线扩展,图1是其扩展电路。
在图1所示的PC机串口扩展电路中,74LS161是二进制计数器,1脚是清0端,2脚是计数端,计数脉冲为负脉冲信号,4051是八选一双向数字/模拟电子开关电路,其中一片用于正向输出,一片用于反向输出。该扩展电路工作原理是通过控制PC机串口的DTR输出的高低电平来形成74LS161的P2脚计数端的负脉冲信号,使161的输出端P14(QA)、P13(QB)、P12(QC)、P11(QD)脚依次在0000到1111十六个状态中变化,本电路仅使用了QA、QB、QC三个输出来形成对4051的ABC控制,最终使得4051(1)的输入端TXD依次通过与TX1~TX8导通而得到输出信号,4051(2)的输出端RXD与RX1~RX8依次导通形成输入信号。由于RXD和TXD的导通是一一对应的,因此串口通信就可以依次通过与多达8个带有三线基本串口的外部设备进行通信传输以实现数据传送。PC机端的电平转换电路是将RS232电平转换为TTL电平,外设端的电平转换电路是将TTL电平转换为RS232电平。由于这种转换有许多电路可以实现,因而,这里不再介绍。
2.电路使用程序
对PC机串口COM1的编程如下:
……
… ;对COM1口的波特率等设置;
MOV DX,3FCH
MOV AL,XXXXXX01B
OUT DX,AL;D1生成RTS负脉冲,对74LS161输出端清0
MOV AL,XXXXXX11B;
OUT DX,AL ;4051的RX1和TX1导通
CALL COM ;调用通信子程序,与第一个外部设备通信;
MOV CX,7 ;设置循环计数器;
NEXT:MOV DX ,3FCH
MOV AL,XXXXXX10B
OUT DX ,AL ;D0位生成DTR的负脉冲,形成161的P2脚计数脉冲
MOV AL,XXXXXX11B
OUT DX,AL ;RX2和TX2导通
CALL COM ;调用通信子程序,与第二个外部设备通信
LOOP NEXT ;循环与另外6个外部设备通信

… ;通信子程序略
3.使用说明
由于该扩展的多路接口在通信时共用一个子程序,因此在与某一路导通时,系统只能与这一路的外部设备进行通信联络。
如果工作现场需要立即和某一路通信,则需要对3FCH的D1位执行两个写操作并在RTS脚形成负脉冲,以对7416I清0后,再连接执行若干次对DTR的两次写操作。例如想对第4路外设通信,则需要执行完成对74LS161清0后,再连续三次对3FCH的D0位进行两个写操作以形成DTR脚的负脉冲,然后即可调用通信子程序。
如需使用PC机的COM2串口,只需将程序中的3F8H~3FDH全部换成2F8H~2FDH即可。
如果使用十六选一双向数字/模拟电子开关电路,可将74LS161的QA、QB、QC、QD四个输出端接至电子开关的四个控制端A、B、C、D,这样就可以达到一个PC机的RS232口与16个带有串口的外设的数据通信。

Ⅲ 高分悬赏毕业论文-USB接口设计!!!!

http://wenku..com/view/5afddb6aa45177232f60a2df.html

Ⅳ usb接口为什么设计成了现在这样要分正反面

我觉得就是一开始没考虑周全。为啥iPhone 6以后的充电口就可以不分正反?充电难道不分正负极?希望早点出不分正反的U口。每次插U口都要看半天烦死了!

Ⅳ USB数字键盘设计

USB HID报告及报告描述符简介相关讨论:http://www.ednchina.com/blog/computer00/14382/category.aspx

在USB中,USB HOST是通过各种描述符来识别设备的,有设备描述符,
配置描述符,接口描述符,端点描述符,字符串描述符,报告描述符等等。
USB报告描述符(Report Descriptor)是HID设备中的一个描述符,它是比较
复杂的一个描述符。

USB HID设备是通过报告来给传送数据的,报告有输入报告和输出报告。
输入报告是USB设备发送给主机的,例如USB鼠标将鼠标移动和鼠标点击等
信息返回给电脑,键盘将按键数据数据返回给电脑等;输出报告是主机发送
给USB设备的,例如键盘上的数字键盘锁定灯和大写字母锁定灯等。报告是
一个数据包,里面包含的是所要传送的数据。输入报告是通过中断输入端点
输入的,而输出报告有点区别,当没有中断输出端点时,可以通过控制输出
端点0发送,当有中断输出端点时,通过中断输出端点发出。

而报告描述符,是描述一个报告以及报告里面的数据是用来干什么用的。
通过它,USB HOST可以分析出报告里面的数据所表示的意思。它通过控制输入
端点0返回,主机使用获取报告描述符命令来获取报告描述符,注意这个请求
是发送到接口的,而不是到设备。一个报告描述符可以描述多个报告,不同的
报告通过报告ID来识别,报告ID在报告最前面,即第一个字节。当报告描述符中
没有规定报告ID时,报告中就没有ID字段,开始就是数据。更详细的说明请参看
USB HID协议,该协议可从http://www.usb.org下载。

USB报告描述符可以通过使用HID Descriptor tool来生成,这个工具可以
到http://www.usb.org下载,为了方便大家,我顺便上传了一份。

http://www.ednchina.com/Upload/Blog/2007/4/2/af7c3443-ad61-4465-ADC7-a74d28bbc322.zip

下面通过由HID Descriptor tool生成的USB鼠标和USB键盘来说明一下报告
描述符和报告。

code char KeyBoardReportDescriptor[63] = {
//表示用途页为通用桌面设备
0x05, 0x01, // USAGE_PAGE (Generic Desktop)

//表示用途为键盘
0x09, 0x06, // USAGE (Keyboard)

//表示应用集合,必须要以END_COLLECTION来结束它,见最后的END_COLLECTION
0xa1, 0x01, // COLLECTION (Application)

//表示用途页为按键
0x05, 0x07, // USAGE_PAGE (Keyboard)

//用途最小值,这里为左ctrl键
0x19, 0xe0, // USAGE_MINIMUM (Keyboard LeftControl)
//用途最大值,这里为右GUI键,即window键
0x29, 0xe7, // USAGE_MAXIMUM (Keyboard Right GUI)
//逻辑最小值为0
0x15, 0x00, // LOGICAL_MINIMUM (0)
//逻辑最大值为1
0x25, 0x01, // LOGICAL_MAXIMUM (1)
//报告大小(即这个字段的宽度)为1bit,所以前面的逻辑最小值为0,逻辑最大值为1
0x75, 0x01, // REPORT_SIZE (1)
//报告的个数为8,即总共有8个bits
0x95, 0x08, // REPORT_COUNT (8)
//输入用,变量,值,绝对值。像键盘这类一般报告绝对值,
//而鼠标移动这样的则报告相对值,表示鼠标移动多少
0x81, 0x02, // INPUT (Data,Var,Abs)
//上面这这几项描述了一个输入用的字段,总共为8个bits,每个bit表示一个按键
//分别从左ctrl键到右GUI键。这8个bits刚好构成一个字节,它位于报告的第一个字节。
//它的最低位,即bit-0对应着左ctrl键,如果返回的数据该位为1,则表示左ctrl键被按下,
//否则,左ctrl键没有按下。最高位,即bit-7表示右GUI键的按下情况。中间的几个位,
//需要根据HID协议中规定的用途页表(HID Usage Tables)来确定。这里通常用来表示
//特殊键,例如ctrl,shift,del键等

//这样的数据段个数为1
0x95, 0x01, // REPORT_COUNT (1)
//每个段长度为8bits
0x75, 0x08, // REPORT_SIZE (8)
//输入用,常量,值,绝对值
0x81, 0x03, // INPUT (Cnst,Var,Abs)

//上面这8个bit是常量,设备必须返回0

//这样的数据段个数为5
0x95, 0x05, // REPORT_COUNT (5)
//每个段大小为1bit
0x75, 0x01, // REPORT_SIZE (1)
//用途是LED,即用来控制键盘上的LED用的,因此下面会说明它是输出用
0x05, 0x08, // USAGE_PAGE (LEDs)
//用途最小值是Num Lock,即数字键锁定灯
0x19, 0x01, // USAGE_MINIMUM (Num Lock)
//用途最大值是Kana,这个是什么灯我也不清楚^_^
0x29, 0x05, // USAGE_MAXIMUM (Kana)
//如前面所说,这个字段是输出用的,用来控制LED。变量,值,绝对值。
//1表示灯亮,0表示灯灭
0x91, 0x02, // OUTPUT (Data,Var,Abs)

//这样的数据段个数为1
0x95, 0x01, // REPORT_COUNT (1)
//每个段大小为3bits
0x75, 0x03, // REPORT_SIZE (3)
//输出用,常量,值,绝对
0x91, 0x03, // OUTPUT (Cnst,Var,Abs)
//由于要按字节对齐,而前面控制LED的只用了5个bit,
//所以后面需要附加3个不用bit,设置为常量。

//报告个数为6
0x95, 0x06, // REPORT_COUNT (6)
//每个段大小为8bits
0x75, 0x08, // REPORT_SIZE (8)
//逻辑最小值0
0x15, 0x00, // LOGICAL_MINIMUM (0)
//逻辑最大值255
0x25, 0xFF, // LOGICAL_MAXIMUM (255)
//用途页为按键
0x05, 0x07, // USAGE_PAGE (Keyboard)
//使用最小值为0
0x19, 0x00, // USAGE_MINIMUM (Reserved (no event indicated))
//使用最大值为0x65
0x29, 0x65, // USAGE_MAXIMUM (Keyboard Application)
//输入用,变量,数组,绝对值
0x81, 0x00, // INPUT (Data,Ary,Abs)
//以上定义了6个8bit宽的数组,每个8bit(即一个字节)用来表示一个按键,所以可以同时
//有6个按键按下。没有按键按下时,全部返回0。如果按下的键太多,导致键盘扫描系统
//无法区分按键时,则全部返回0x01,即6个0x01。如果有一个键按下,则这6个字节中的第一
//个字节为相应的键值(具体的值参看HID Usage Tables),如果两个键按下,则第1、2两个
//字节分别为相应的键值,以次类推。

//关集合,跟上面的对应
0xc0 // END_COLLECTION
};

通过上面的分析,我们知道这个报告中只有一个报告,所以没有报告ID,
因此返回的都是实际使用的数据。总共有8字节输入,1字节输出。其中输入的
第一字节用来表示特殊按键,第二字节保留,后面的六字节为普通按键。如果
只有左ctrl键按下,则返回01 00 00 00 00 00 00 00(十六进制),如果
只有数字键1 按下,则返回00 00 59 00 00 00 00 00,如果数字
键1 和2 同时按下,则返回00 00 59 5A 00 00 00 00,如果
再按下左shift 键,则返回02 00 59 5A 00 00 00 00,
然后再释放1 键,则返回02 00 5A 00 00 00 00 00,
然后全部按键释放,则返回00 00 00 00 00 00 00 00。
这些数据(即报告)都是通过中断端点返回的。当按下Num Lock键时,PC会发送
输出报告,从报告描述符中我们知道,Num Lock的LED对应着输出报告的最低位,
当数字小键盘打开时,输出xxxxxxx1(二进制,打x的由其它的LED状态决定);
当数字小键盘关闭时,输出xxxxxxx0(同前)。取出最低位就可以控制数字键锁定LED了。

下面这个报告描述符是USB鼠标报告描述符,比起键盘的来说要简单些。
它描述了4个字节,第一个字节表示按键,第二个字节表示x轴(即鼠标左右移动,
0表示不动,正值表示往右移,负值表示往左移),第三个字节表示y轴(即鼠标
上下移动,0表示不动,正值表示往下移动,负值表示往上移动),第四个字节
表示鼠标滚轮(正值为往上滚动,负值为往下滚动)。

code char MouseReportDescriptor[52] = {
//通用桌面设备
0x05, 0x01, // USAGE_PAGE (Generic Desktop)
//鼠标
0x09, 0x02, // USAGE (Mouse)
//集合
0xa1, 0x01, // COLLECTION (Application)
//指针设备
0x09, 0x01, // USAGE (Pointer)
//集合
0xa1, 0x00, // COLLECTION (Physical)
//按键
0x05, 0x09, // USAGE_PAGE (Button)
//使用最小值1
0x19, 0x01, // USAGE_MINIMUM (Button 1)
//使用最大值3。1表示左键,2表示右键,3表示中键
0x29, 0x03, // USAGE_MAXIMUM (Button 3)
//逻辑最小值0
0x15, 0x00, // LOGICAL_MINIMUM (0)
//逻辑最大值1
0x25, 0x01, // LOGICAL_MAXIMUM (1)
//数量为3
0x95, 0x03, // REPORT_COUNT (3)
//大小为1bit
0x75, 0x01, // REPORT_SIZE (1)
//输入,变量,数值,绝对值
//以上3个bit分别表示鼠标的三个按键情况,最低位(bit-0)为左键
//bit-1为右键,bit-2为中键,按下时对应的位值为1,释放时对应的值为0
0x81, 0x02, // INPUT (Data,Var,Abs)
//填充5个bit,补足一个字节
0x95, 0x01, // REPORT_COUNT (1)
0x75, 0x05, // REPORT_SIZE (5)
0x81, 0x03, // INPUT (Cnst,Var,Abs)

//用途页为通用桌面
0x05, 0x01, // USAGE_PAGE (Generic Desktop)
//用途为X
0x09, 0x30, // USAGE (X)
//用途为Y
0x09, 0x31, // USAGE (Y)
//用途为滚轮
0x09, 0x38, // USAGE (Wheel)
//逻辑最小值为-127
0x15, 0x81, // LOGICAL_MINIMUM (-127)
//逻辑最大值为+127
0x25, 0x7f, // LOGICAL_MAXIMUM (127)
//大小为8个bits
0x75, 0x08, // REPORT_SIZE (8)
//数量为3个,即分别代表x,y,滚轮
0x95, 0x03, // REPORT_COUNT (3)
//输入,变量,值,相对值
0x81, 0x06, // INPUT (Data,Var,Rel)

//关集合
0xc0, // END_COLLECTION
0xc0 // END_COLLECTION
};
通过对上面的报告分析,我们知道报告返回4个字节,没有报告ID。如果鼠标左键按下,
则返回01 00 00 00(十六进制值),如果右键按下,则返回02 00 00 00,如果中键按下,
则返回04 00 00 00,如果三个键同时按下,则返回07 00 00 00。如果鼠标往右移动则
第二字节返回正值,值越大移动速度越快。其它的类推。

Ⅵ USB为什么不设计成正反盲插

面对传统的USB-A接口,可能99%的人都有着数不清的插反、插错经历,即便有时候注意去看LOGO标志、看握把的凹陷,但仍旧不能确保100%。对于这个问题,Intel的技术大牛、USB标准早期制定者Ajay Bhatt在接受DesignNews采访时终于给了全世界一个答复。他说,在USB口设计之初,其实就考虑过正反盲插的问题,但之所以没能最终推行,阻力主要是成本,因为做盲插需要消耗多一倍的线缆和电气元件。
Bhatt说,对于一项前景并不明朗的新技术,成本是否足够吸引厂家们推广让他们不得不纳入很高的考虑优先级。当然,现在是事后了,你会说,USB比串口、并口要好很多,后者事实上更费料,而且还无法热插拔。
看起来Bhatt对当时他们的谨慎有些后悔,同时,他还认为,当时起始速率其实也能做更高比如100Mbps,而不是12Mbps(USB 1.1)。
Type-C并非仅支持正反插
在USB 3.1标准中,有三种接口样式,一个是Type-A(即Standard-A,传统计算机上最常见的USB接口样式),一个是Type-B(既Micro-B,三星Galaxy Note 3配备的接口样式),另外一个是Type-C(即本文中提到的全新设计的接口样式)。
简单地说,USB IF协会从目前存在的接近十种之多的USB接口中选择了其中最为广泛的两种,分别命名为Type-A和Type-B,接着又重新设计了一种新的接口并将之命名为Type-C;只有这三种接口才能够支持USB 3.1标准下的数据传输速度、电流传输大小等等各项技术标准。

Ⅶ USB免驱动设计有什么区别

蓝牙适配器,免驱动的就是使用微软系统自带的驱动,带驱动的,就是使用厂家的驱专动。
一般,属免驱动的,功能都比较简单,像蓝牙音频网关之类的功能,一般是没有的。但价格低廉,且安装方便,因为即插即用,不必安装驱动。
带驱动的,通常功能比较丰富,价格偏贵一点。

蓝牙适配器指数码产品适用蓝牙设备的接口转换器。蓝牙适配器采用了全球通用的短距离无线连接技术,使用与微波、遥控器以及有些民用无线通讯器材相同的2.4GHz附近免付费、免申请的无线电频段,为避免此频段电子装置众多而造成的相互干扰,因而以1600次高难度跳频以及加密保密技术。

Ⅷ usb主机与usb设备设计上的区别

区别就是USB设备只是通过USB传输信息和供电,计算机完成计算工作,比如U盘。
USB主机呢,就是USB接口除了供电和传输信息,剩下的计算功能都是他自己完成的。

Ⅸ 怎样设计才能通过usb口把程序输入到单片机中,电路图该怎么画

USB加载程序要和单片机结合,要参考具体单片机对加载的要求,我是用STM32F103,可以回参考一下。

期中PL2303RTS是接答ARM的复位脚,PL2303DTR接ARM的boot0,设置为外部加载模式。

Ⅹ 为什么USB插头设计的这么反人类

的确,来usb接口设计在笔记源本机身后面使用起来很不方便,原因你已经说了一二。
虽然说后置usb接口可以插无线鼠标接收器,但毕竟使用无线鼠标的不是主流用户,使用场景十分有限。
当然了,出现这样的设计和厂家设计思路、内部空间堆叠不当有很大关系,但可能也是没办法吧,不然一般的厂家也不愿这样的设计出现在自己的产品中。

热点内容
美发店认证 发布:2021-03-16 21:43:38 浏览:443
物业纠纷原因 发布:2021-03-16 21:42:46 浏览:474
全国著名不孕不育医院 发布:2021-03-16 21:42:24 浏览:679
知名明星确诊 发布:2021-03-16 21:42:04 浏览:14
ipad大专有用吗 发布:2021-03-16 21:40:58 浏览:670
公务员协议班值得吗 发布:2021-03-16 21:40:00 浏览:21
知名书店品牌 发布:2021-03-16 21:39:09 浏览:949
q雷授权码在哪里买 发布:2021-03-16 21:38:44 浏览:852
图书天猫转让 发布:2021-03-16 21:38:26 浏览:707
宝宝水杯品牌 发布:2021-03-16 21:35:56 浏览:837