当前位置:首页 » 软件设计 » 橡胶设计

橡胶设计

发布时间: 2020-12-20 00:10:49

⑴ 橡胶配方设计与性能的关系

橡胶配方设计与性能的关系
一、 橡胶配方设计与硫化橡胶物理性能的关系
(一) 拉伸强度
拉伸强度表征硫化橡胶能够抵抗拉伸破坏的极限能力。虽然绝大多数橡胶制品在使用条件下,不会发生比原来长度大几倍的形变,但许多橡胶制品的实际使用寿命与拉伸强度有较好的相关性。
研究高聚物断裂强度的结果表明,大分子的主价健、分子间的作用力(次价健)以及大分子链的柔性、松弛过程等是决定高聚物拉伸强度的内在因素。
下面从各个配合体系来讨论提高拉伸强度的方法。
1. 橡胶结构与拉伸强度的关系
相对分子质量为(3.0~3.5)×105的生胶,对保证较高的拉伸强度有利。
主链上有极性取代基时,会使分子间的作用力增加,拉伸强度也随之提高。例如丁腈橡胶随丙烯腈含量增加,拉伸强度随之增大。
随结晶度提高,分子排列会更加紧密有序,使孔隙和微观缺陷减少,分子间作用力增强,大分子链段运动较为困难,从而使拉伸强度提高。橡胶分子链取向后,与分子链平行方向的拉伸强度增加。
2. 硫化体系与拉伸强度的关系
欲获得较高的拉伸强度必须使交联密度适度,即交联剂的用量要适宜。
交联键类型与硫化橡胶拉伸强度的关系,按下列顺序递减:离子键>多硫键>双硫键>单硫键>碳-碳键。拉伸强度随交联键键能增加而减小,因为键能较小的弱键,在应力状态下能起到释放应力的作用,减轻应力集中的程度,使交联网链能均匀地承受较大的应力。
3. 补强填充体系与拉伸强度的关系
补强剂的最佳用量与补强剂的性质、胶种以及配方中的其他组分有关:例如炭黑的粒径越小,表面活性越大,达到最大拉伸强度时的用量趋于减少;软质橡胶的炭黑用量在40~60份时,硫化胶的拉伸强度较好。
4. 增塑体系与拉伸强度的关系
总地来说,软化剂用量超过5份时,就会使硫化胶的拉伸强度降低。对非极性的不饱和橡胶(如NR、IR、SBR、BR),芳烃油对其硫化胶的拉伸强度影响较小;石蜡油对它则有不良的影响;环烷油的影响介于两者之间。对不饱和度很低的非极性橡胶如EPDM、IIR,最好使用不饱和度低的石蜡油和环烷油。对极性不饱和橡胶(如NBR,CR),最好采用酯类和芳烃油软化剂。
为提高硫化胶的拉伸强度,选用古马隆树脂、苯乙烯-茚树脂、高分子低聚物以及高黏度的油更有利一些。
5. 提高硫化胶拉伸强度的其他方法
(1) 橡胶和某些树脂共混改性 例如NR/PE共混、NBR/PVC共混、EPDM/PP共混等均可提高共混胶的拉伸强度。
(2) 橡胶的化学改性 通过改性剂在橡胶分子之间或橡胶与填料之间生成化学键和吸附键,以提高硫化胶的拉伸强度。
(3) 填料表面改性 使用表面活性、偶联剂对填料表面进行处理,以改善填料与橡胶大分子间的界面亲和力,不仅有助于填料的分散,而且可以改善硫化胶的力学性能。
(二) 定伸应力和硬度
定伸应力和硬度都是表征硫化橡胶刚度的重要指标,两者均表征硫化胶产生一定形变所需要的力。定伸应力与较大的拉伸形变有关,而硬度与较小的压缩形变有关。
1. 橡胶分子结构与定伸应力的关系
橡胶分子量越大,游离末端越少,有效链数越多,定伸应力也越大。
凡是能增加橡胶大分子间作用力的结构因素,都可以提高硫化胶网络抵抗变形的能力,使定伸应力提高。例如橡胶大分子主链上带有极性原子或极性基团、结晶型橡胶等结构因素使分子间作用力增加,因此其定伸应力较高。
2. 硫化体系与定伸应力的关系
交联密度对定伸应力的影响较为显著。随交联密度增大,定伸应力和硬度几乎呈线性增加。
3. 填充体系与定伸应力的关系
填充的品种和用量是影响硫化胶定伸应力和硬度的主要因素。
定伸应力和硬度均随填料粒径减小而增大,随结构度和表面活性增大而增大,随填料用量增加而增大。
4. 提高硫化胶定伸应力和硬度的其他方法
(1) 使用酚醛树脂/硬化剂,可与橡胶生成三维空间网络结构,使硫化胶的邵尔A硬度达到95。例如用烷基间苯二酚环氧树脂15份/促进剂H1.5份,可制作高硬度的胎圈胶条.(2) 在EPDM中添加液态二烯类橡胶和多量硫黄,可制出硫化特性和加工性能优良的高硬度硫化胶。
(3) 在NBR中添加齐聚酯,NBR/PVC共混、NBR/三元尼龙共混等方法均可使硫化胶的邵尔A硬度达到90。
(三) 撕裂强度
撕裂是由于硫化胶中的裂纹或裂口受力时迅速扩展、开裂而导致的破坏现象。撕裂强度是试样被撕裂时单位厚度所承受的负荷。
撕裂强度与拉伸强度之间没有直接的关系,也就是说拉伸强度高的硫化胶其撕裂强度不一定也高。
1. 橡胶分子结构与撕裂强度的关系
随分子量增加,分子间的作用力增大,撕裂强度增大;但是当分子量增大到一定程度时,其撕裂强度逐渐趋势于平衡。结晶型橡胶在常温下的撕裂强度比非结晶型橡胶高。
常温下NR和CR的撕裂强度较高,这是因为结晶型橡胶撕裂时产生的诱导结晶,使应变能力大为提高。但是高温下除NR外,撕裂强度均明显降低。而填充炭黑后的硫化胶撕裂强度均明显提高。
2. 硫化体系与撕裂强度的关系
撕裂强度随交联密度增大而增大,但达到最大值后,交联密度再增加,撕裂强度则急剧下降。
3. 填充体系与撕裂强度的关系
随炭黑粒径减小,撕裂强度增加。在粒径相同的情况下,结构度低的炭黑对撕裂强度有利。
使用各向同性的填料,如炭黑、白炭黑、白艳华、立德粉和氧化锌等,可获得较高的撕裂强度;而使用各向异性的填料,如陶土、碳酸镁等则不能得到高撕裂强度。
某些改性的无机填料,如用羧化聚丁二烯(CPB)改性的碳酸钙、氢氧化铝,可提高SBR硫化胶的撕裂强度。
4. 增塑体系对撕裂强度的影响
5. 一般添加软化剂会使硫化胶的撕裂强度降低。尤其是石蜡油对SBR硫化胶的撕裂强度极为不利,而芳烃油则可使SBR硫化胶具有较高的撕裂强度,随芳烃油用量增加。
(四) 耐磨耗性
耐磨耗性表征硫化胶抵抗摩擦力作用下因表面磨损而使材料损耗的能力。它是个与橡胶制品使用寿命密切相关的力学性能,它不仅与使用条件、摩擦副的表面状态以及制品的结构有关,而且与硫化胶的其他力学性能和黏弹性能等物理-化学性质等有关,其影响因素很多。
1.胶种的影响
在通用的二烯类橡胶中,耐磨耗性按下列顺序递减:BR>溶聚SBR>乳聚SBR>NR>IR。BR耐磨耗性好的主要原因是它的玻璃化温度(Tg)较低(-95~105℃),分子链柔顺性好,弹性高。SBR的耐磨耗性随分子量增加而提高。
NBR硫化胶的耐磨耗性随丙烯腈含量增加而提高,XNBR的耐磨耗性比NBR好。
聚氨酯(PU)是所有橡胶中耐磨耗性最好的一种橡胶,在常温下具有优异的耐磨性,但在高温下它的耐磨性会急剧下降。
2.硫化体系的影响
硫化胶的耐磨耗性随交联密度增加有一个最佳值,该最佳值不仅取决于硫化体系而且和炭黑的用量及结构有关。在提高炭黑的用量和结构度时,由炭黑所提供的刚度就会增加,若要保持硫化胶刚度的最佳值,就必须降低由硫化体系所提供的刚性部分,即适当地降低交联密度,反之则应提高硫化胶的交联密度。
3.填充体系的影响
通常硫化胶的耐磨耗性随炭黑粒径减小,随表面活性和分散性的增加而提高。
填充新工艺炭黑和用硅烷偶联剂处理的白炭黑均可提高硫化胶的耐磨耗性。
4. 增塑体系的影响
一般说来,胶料中加入软化剂都会使耐磨耗性降低。是NR和SBR中采用芳烃油时,耐磨耗性损失较其他油类小一些。
5. 防护体系的影响
在疲劳磨耗的条件下,添加适当的防老剂可有效地提高硫化胶的耐磨耗性。如4010NA效果突出,除4010NA外,6PPD、DTPD、DPPD/H等均有一定的防止疲劳老化的效果。
6. 提高硫化胶耐磨耗性的其他方法
(1) 炭黑改性剂 添加少量含硝基化合物的炭黑改性剂或其他分散剂,可改善炭黑的分散度,提高硫化胶的耐磨耗性。
(2) 硫化胶表面处理 使用含卤素化合物的溶液或气体,例如液态五氟化锑、气态五氟化锑,对NBR等硫化胶表面进行处理,可降低硫化胶表面的摩擦系数,提高耐磨耗性。
(3) 应用硅烷偶联剂改性填料 例如使用硅烷偶联剂A-189处理的白炭黑,填充于NBR胶料中,其硫化胶的耐磨耗性明显提高,用硅烷偶联剂Si-69处理的白炭黑填充的EPDM硫化胶,其耐磨耗性也能明显提高。
(4) 橡塑共混 橡塑共混是提高硫化胶耐磨耗性的有效途径之一。例如NBR/PVC、NBR/三元尼龙等均可提高硫化胶的耐磨耗性。
(5) 添加固体润滑剂和减磨性材料 例如在NBR胶料中添加石墨、二硫化钼、氮化硅、碳纤维等,可使硫化胶的磨擦系数降低,耐磨耗性提高。
(五) 弹性
橡胶的高弹性是由卷曲大分子的构象熵变化而造成的。
1. 橡胶分子结构与弹性的关系
分子量越大,对弹性没有贡献的游离末端数量越少;分子链内彼此缠结而导致的“准交联”效应增加,因此分子量大有利于弹性的提高。
在常温下不易结晶的由柔性分子链组成的高聚物,分子链的柔性越大,弹性越好。
2. 硫化体系与弹性的关系
随交联密度增加,硫化胶的弹性增大并出现最大值,随后交联密度继续增大,弹性则呈下降趋势。因为适度的交联可减少分子链滑移而形成的不可逆形变,有利于弹性提高。交联过度会造成分子链的活动受阻,而使弹性下降。
3. 填充体系与弹性的关系
硫化胶的弹性完全是由橡胶大分子的构象变化所造成的,所以提高含胶率是提高弹性最直接、最有效的方法,因此为了获得高弹性,应尽量减少填充剂用量,增加生胶含量。但为了降低成本,应选用适当的填料。
4. 增塑体系与硫化胶弹性的关系
软化剂对弹性的影响与其和橡胶的相容性有关。软化剂与橡胶的相容性越差,硫化胶的弹性越差。
(六) 疲劳与疲劳破坏
耐被劳破坏性与胶种的关系
从NR、SBR硫化胶的疲劳破坏试验中发现,在应变量为120%时,NR和SBR耐疲劳破坏的相对优势发生转化:SBR在应变量小于120%时,其疲劳寿命次数高于NR;而在低于120%时则低于NR。NR的耐疲劳破坏性恰好与SBR相反。
一、 橡胶配方设计与使用性能的关系
(一) 耐热性
所谓耐热性是指硫化胶在高温长时间热老化作用下,保持原有物理性能的能力。
1. 橡胶的选择
大量研究表明,耐热聚合物的结构特点是:分子链高度有序;刚性大;有高度僵硬的结构;分子间作用力大;具有较高的熔点或软化点。例如聚四氟乙烯(PTFE),使用温度为315℃,完全符合上述结构特点。
目前作为耐热橡胶经常使用的有EPDM、IIR、CSM、ACM、HNBR、FKM和Q。
2. 硫化体系的选择
不同的硫化体系形成不同的交联键,各种交联键的键能和吸氧速度不同,键能越大,硫化胶的热稳定性越好;吸氧速度越慢,硫化胶的耐热氧老化性越好。
在常用的硫化体系中,过氧化物硫化体系的耐热性最好。
目前EPDM的耐热配合几乎都采用过氧化物硫化体系。单独使用过氧化物作硫化剂时,存在交联密度低、热撕裂强度低等问题。最好是和某些共交联剂交用。
3. 防护体系的选择
橡胶制品在高温使用条件下,防老剂可能因挥发、迁移等原因迅速损耗,从而引起制品性能劣化。因此在耐热橡胶配方中,应使用挥发性小的防老剂或分子量大的抗氧剂,最好是使用聚合型或反应型防老剂。
4. 填充体系的影响
无机填料的耐热性比炭黑好,无机填料中耐热性比较好的有白炭黑、氧化锌、氧化美、三氧化二铝和硅酸盐。
5. 软化剂的影响
一般软化剂分子量低,高温下易挥发或迁移,导致硫化胶硬度增加、伸长率降低。所以耐热橡胶配方中应选用高温下热稳定性好、不易挥发的品种。
(二) 耐寒性
橡胶的耐寒性可定义为在规定的低温下,保持其弹性和正常工作的能力。
硫化胶的耐寒性主要取决于高聚物的两个基本物性,即玻璃化转变温度(Tg)t和结晶.
对于非结晶型橡胶的耐寒性,可用Tg和Tb(脆性温度)表征.
对结晶型橡胶则不能用Tg、Tb来表征它的耐寒性,能高于Tg70~80℃。
1. 橡胶分子结构对耐寒性的影响
① 主链中含有双键和醚键的橡胶,例如BR、NR、CO、Q,具有良好的耐寒性;② 主链不含双键,侧链含有极性基团的橡胶,例如ACM、CSM、FKM,耐寒性最差;③ 主链含有双键,而侧链含有极性基团的橡胶,例如NBR、CR,其耐寒性居中;④ 不饱和度很小的非极性橡胶EPDM、IIR,其耐寒性优于SBR、NBR、CR。
2. 增塑剂的影响
增塑剂是除生胶之外对耐寒性影响最大的配合剂。加入增塑可降低橡胶的Tg,提高其耐寒性,降低聚合物的松弛温度,减少形变时所产生的应力,从而达到防止脆性破坏的目的。
3. 硫化体系的影响
交联生成的化学键使Tg上升,对耐寒性不利,因为交联后分子链段的活动性受到限制,降低了分子链的柔性。还有一种解释是随交联密度增加,网络结构中自由链段体积减少,从而降低了分子链段的运动性。
4. 填充体系的影响
填充剂对耐寒性的影响取决于填充剂和橡胶相互作用后所形成的结构。活性炭黑粒子和橡胶分子之间会形成不同的物理吸附键和牢固的化学吸附键,在炭黑粒子表面形成生胶吸附层(界面层),该界面层内层处于玻璃态,外层处于来玻璃态,所以被吸附的橡胶Tg上升,不能指望加入填充剂来改善硫化胶的耐寒性。
(三) 耐油性
耐油性是指硫化胶抗油类作用的能力,当橡胶制品与油液长时间接触时,会发生如下两种现象:①油液渗透到橡胶中,使之溶胀或体积增大;②胶料中的某些可溶性配合剂被油抽出,导致硫化胶收缩或体积减小。
1. 橡胶的选择
(1) 耐燃油性 各种橡胶在23℃下浸泡在异辛烷和芳香族化物(汽油和苯)的混合液(体积比为60:40)中,46h后,其体积变化和拉伸强度保持率如表9-37所示。
在极性橡胶中耐燃油性的排列顺序为:FKM>CO>NBR>ACN>CPE>CR。
FMVQ、FKM耐混合型燃油最好;NBR次之,随丙烯腈含量增加,耐混合燃油性提高;ACM耐混合燃油性最差。
(2) 耐矿物油性 矿物油属于非极性油类,只有极性橡胶耐矿物油,而非极性橡胶则不耐矿物油。
NBR是常用的耐矿物油橡胶,其耐油性随丙烯腈含量增加而提高。
(3) 耐合成润滑油性 合成润滑油由基本液体和添加剂两部分组成。基本液体主要是合成的碳氢化合物、二元酸的酯类、磷酸酯、硅和氟的化合物等。
常用的添加剂有抗氧剂、腐蚀抑制剂、去污剂、分散剂、泡沫抑制剂、抗挤压剂、黏度指数改进剂等。通常大多数添加剂的化学性质都比较活泼,对橡胶的化学腐蚀性较大。如抗氧剂、抗挤压剂中的硫、磷化合物可使NBR严重硬化,胺类对FKM侵蚀严重等。
2. 硫化体系的影响
随交联密度增加,分子间作用力增大,硫化胶网络结构致密,自由空间减小,油难以扩散。所以应适当增加交联剂用量,提交联密度。
3. 填充剂和增塑剂的影响
当填充剂和增塑剂用量增加时,硫化胶的溶胀率降低。因为溶胀主要是硫化橡胶网络中渗入油而引起的体积增加,增加填料和增塑剂的用量,即降低了胶料中橡胶的体积分数,有助于提高耐溶胀性。通常填料的活性越高,与橡胶的结合力越强,硫化胶的体积溶胀越小。
4. 防护体系的选择
耐油橡胶制品经常在温度较高的热油中使用,因此防老剂在油中的稳定性十分重要,假如硫化胶中的防老剂在油中被抽出,则制品的耐热老化性能会大大降低。
(四) 耐化学腐蚀性
当橡胶制品和化学药品接触时,由于氧化作用常常引起橡胶和配合剂的分解,造成硫化胶的腐蚀或溶胀。这些化学药品主要是各种酸、碱、盐溶液,它们主要是以水溶液状态出现的。
耐化学腐蚀性的配合体系
(1) 橡胶的选择 耐腐蚀橡胶应具有较高的饱和度,而且要尽量消除或减少活泼的取代基团,或者是引进某些取代基把橡胶分子结构中的活泼部分稳定起来。
(2) 硫化体系 增加交联密度、提高硫化胶的弹性模量是提高耐化学腐蚀性的重要措施之一。
(3) 填充体系 耐化学腐蚀的胶料配方所选用的填充剂应具有化学惰性,不易与化学腐蚀介质反应,不被侵蚀,不含水溶性的电解质杂质。
(4) 增塑体系 应选用不被化学药品抽出、不易与化学药品起化学作用的增塑剂。例如酯类和植物油类增塑剂,在碱液中易产生皂化作用,在热碱液中往往会被抽出,致使制品体积收缩,甚至丧失工作能力。
(五) 减振阻尼性
减振橡胶的主要性能指标是:①硫化胶的静刚度,即硫化胶的弹性模量;②硫化胶的阻尼性能,即阻尼系数tanδ;③硫化胶的动态模量。除上述关键性能指标外,还应考虑疲劳、蠕变、耐热以及金属黏合强度等性能。
1. 橡胶的选择
减振橡胶的阻尼性能主要取决于橡胶的分子结构,例如分子链上引入的侧基体积较大时,阻碍链段运动,增加了分子之间的内摩擦,使阻尼系数tanδ增大。结晶的存在也会降低体系的阻尼特性,例如在减振效果较好的CIIR中混入结晶的IR时,并用胶的阻尼系数tanδ将随IR含量增加而降低。
tanδ由大到小的排列顺序是:IIR>NBR>CR、SBR>Q、EPDM、PU>NR>BR。NR的tanδ虽然比较小,但其耐疲劳性、生热、蠕变与金属黏合等综合性能最好,所以NR还广泛地用于减振橡胶。
2. 硫化体系的影响
硫化体系与硫化胶的刚度、tanδ、耐热性、耐疲劳性均有关系。一般硫化胶网络中硫原子越少,交联键越牢固,硫化胶的弹性模量越大,tanδ越小。
在SBR中随硫黄用量增加,静刚度上升,阻尼系数下降,动刚度基本不变。
3. 填充体系的影响
填充体系与硫化胶的动模量、静模量、tanδ有密切关系,当硫化胶受力产生形变时,橡胶分子链段与填料之间或填料与填料之间产生内摩擦使硫化胶的阻尼增大。填料的粒径越小,比表面积越大,与橡胶分子的接触面越大,其物理结点越多,触变性越大,在动态应变中产生的滞后损耗越大。因此填料的粒径越小,活性越大,硫化胶的阻尼性、动模量和静模量也较大。
为了尽可能提高减振橡胶的阻尼特性,降低蠕变及性能对温度的依赖性,往往在高阻尼的隔振橡胶中配合一些特殊的填充剂,例如蛭石、石墨等。
4. 增塑体系的影响
用作减振橡胶的增塑剂,如要求阻尼峰加宽,应使用与橡胶不相容或只有一定限度溶解度的增塑剂。
(六) 电绝缘性
电绝缘性一般通过绝缘电阻(体积电阻率和表面电阻率)、介电常数、介电损耗、击穿电压来表征。
1. 橡胶的选择
橡胶的电绝缘性主要取决于橡胶分子极性的大小。通常非极性橡胶例如NR、BR、SBR、IIR、EPDM、Q的电绝缘性好。是常用的电绝缘胶种。
2. 硫化体系的影响
不同类型的交联键可使硫化胶产生不同的偶极矩,因此其电绝缘性也不相同。综合考虑以NR为基础的软质绝缘橡胶采用低硫或无硫硫化体系较为适宜。以IIR为基础的电绝缘橡胶最好使用醌肟硫化体系。
3. 填充体系的影响
一般电绝缘橡胶配方中,填料的用量都比较多,因此对硫化胶的电绝缘性的影响较大。炭黑特别是高结构、比表面积大的炭黑,用量大时容易形成导电通道,使电绝缘性明显降低,因此在电绝缘橡胶中,除用作着色剂外,一般不使用炭黑。
4. 软化剂的选择
以NR、SBR、BR为基础的低压电绝缘橡胶,通常选用石蜡烃油即可满足使有要求,其用量为5~10份。
5. 防护体系的选择
电绝缘橡胶制品,特别是耐高压的电绝缘橡胶制品,在使用过程中要承受高温和臭氧的作用,因此在电绝缘橡胶配方设计时,应注意选择防护体系,以延长制品的使用寿命。一般采用胺类、对苯二胺类防老剂,并用适当的抗臭氧剂,可获得较好的防护效果。

⑵ 橡胶件设计准则谁有么 产品结构设计

7.1 在运输过程中,应防止制品被日光直晒和雨浸淋,严禁与油类、润滑脂、酸、碱等有损制品的物质接触。
7.2 装卸及中转储运过程中应妥善操作,若需堆码装箱容器时,应避免由于堆码过高过重而损坏垛下部的装箱容器及其中的制品。
8 贮存
8.1 一般要求 橡胶制品应按8.2要求贮存于室内,贮存室宜独立一间。
8.2 温度 贮存温度宜低于25℃.制品宜避开如炉具、散热器和直射阳光等直接热源。 如果贮存温度低于15℃,搬运时要小心,因为这时贮存的制品可能已经变硬,搬运不当就易变形。从低温下取出的制品,其整体温度宜升高到大约30℃后,才可投入使用。
8.3 湿度 在给定的贮存温度内要控制相对湿度,使之不发生水汽凝结。在任何情况下,贮存环境中的相对温度都宜低于70%;如果贮存聚氨酯,则宜低于65%。
8.4 光 橡胶宜避开光源,尤其是真射阳光或具有高紫外含量的强人工光源。城镇燃气调压器用的橡胶件应存放于密闭的、不透明的、充满氮气的容器内保管。 注:建议贮存室的任何窗户都用红色或橙色遮帘。
8.5 辐射 宜采取防范措施保护贮存的制品避开所有可能引进制品损害的离子辐射源。 8.6 臭氧 由于臭氧对橡胶特别有害,贮存室不宜有任何能产生臭氧的设备,如水银蒸汽灯及能产生电火花或无声放电的高压电器等。宜避免燃烧气体及有机蒸汽进入贮存室。当使用叉车等设备搬运大的橡胶制品时,宜小心以确保该设备不会影响的橡胶的污染源。 8.7 与液体和半液体材料接触 在贮存期间的任何时候橡胶都不允许与染色体、半液体材料(如汽油、润滑油、酸、消毒剂、清洗液体)或其蒸汽相接触,除非这些材料是制品设计要求的一部分或制造厂的包装,当橡胶制品在接收时就涂有工作介质,则宜贮存在这种状态下。 8.8 与金属接触 已知某些金属及其合金(尤其是铜和锰)对某些橡胶具有有害作用,橡胶不宜在与这样的金属接触的情况下贮存,除非已被粘合到这些金属上,但也宜用适当材料如纸或聚乙烯包裹或隔离进行保护。
8.9 与隔离剂接触 隔离剂仅宜用于橡胶制品包装以防止粘连(见HG/T 2715),粉剂的使用量宜为能防止粘连的最小用量。 所有的任何粉剂都不宜含有对橡胶有害影响的组分。 8.10 不同制品相互接触 宜避免由不同配方制造的橡胶制品之间的接触,包括颜色不同的制品。
8.11 橡胶与金属粘接的制品 橡胶与金属粘接的制品中的金属件不宜与其他制品的橡胶接触。金属上所使用的防腐剂对橡胶或粘合的有害影响程度不会使制品不符合该制品的标准。 8.12 库存周转 制品宜以严格的周转方式从库存中出货,以保证库存中剩余的制品是那些 最近制造或交付的制品。用于常规产品的橡胶件数量宜以计划下达之日起3个月内用量考虑库存数量。用于特殊产品的橡胶件数量宜以订单结束后一个月内完成处理。
8.13 贮存期限 除有特殊的要求另外规定外,橡胶件宜为表6中给出的期限 表6 橡胶件贮存期限 名 称 入库前期限 入库后期限 周转期限 组装后期限 出厂后年限 调压器 橡胶件 <3 月 < 9 月 < 3 月 < 12 月 < 60 月 O 型圈 <6 月 < 12 月 < 3 月 < 12 月 < 60 月 垫 片 <6 月 < 18 月 < 3 月 < 12 月 < 72 月 注:① 如果贮存温度高于或低于 25℃都会影响贮存时间,在高 10℃的温度下贮存会减少约50%的贮存时间,在低10℃的温度下会增加贮存时间约100%。 ② 未使用的产品退回后18 个月内复试合格后可以再次保存,期限为 3 个月,同时建议客户使用年限宜在39 个月内。 ③ 以上期限是指严格采用正料生产、其性能达到本标准规定的条款、其保存条件符合本标准要求的产品保存、周转、使用的时间。

⑶ 丁基橡胶的配方设计

丁基橡胶基本配合
丁基橡胶的基本配合包括硫化体系、补强体系、增塑体系和防老体系等。
一、丁基橡胶分子中含有少量异戊二烯链接,这是丁基橡胶硫化的基础。主要采用三种方法硫化:硫磺硫化、二肟类和对亚硝基化合物硫化、酚醛树脂硫化。一般讲,硫磺硫化体系在加工、硫化胶性能等方面综合性能较好;醌肟类体系硫化速度,硫化胶密实、耐热、耐臭氧;树脂类硫化体系的硫化胶性能耐高温性优异。
(一)、硫磺硫化体系
丁基橡胶硫化机理与天然橡胶相同,硫化体系由硫磺、活性剂、促进剂等组成。
1、硫化组分
(1)、硫磺 硫磺为硫化剂,一般2-3份即可获得最佳定伸应力和耐臭氧性能。硫磺在丁基橡胶中溶解度较低,若总量超过1.5份,容易喷霜。硫化时,形成多硫键或双硫键交联结构和单硫结构,前者采用硫磺量较多为普通体系;后者硫磺用量较少或采用硫给予体,为有效硫化体系。
(2)、活化剂 丁基橡胶在硫化硫化过程中,会产生硫化氢,破坏橡胶中的双硫键,引起氧化还原反应。氧化锌能与硫化氢反应生成硫化锌,阻止氧化还原,使硫化顺利进行。一般为5份左右,与氧化锌配合使用的活化剂主要为硬脂酸,一般为1-2份,用量大时会降低定伸应力。
(3)、促进剂 丁基橡胶的硫磺硫化必须使用促进剂,多以超促进剂或超超促进剂,如秋兰姆类或氨基甲酸盐类为主,且用量较多。考虑硫化速度、交联密度、焦烧安全和硫化胶性能的综合性能平衡,一般采用一种或几种主促进剂与一种辅助促进剂并用,常用辅助促进剂有M、DM,作用是在加工过程中防止焦烧,硫化时促进硫化。
a、秋兰姆类 此类为丁基橡胶硫磺硫化体系主促进剂,常用品种TMTD、TETD、TMTM、TRA(DPTT)等。其中TMTD为最常用品种,其硫化初始速度较快,常与促进剂M或促进剂DM并用,一般不超过1.5份。
b、二硫代氨基甲酸盐类 其结构同秋兰姆类类似,但活性更大。主要品种有TeEDC、CDD、CED、Bz、SED等,可同M、DM或TMTD等并用,也可并用。
c、噻唑类 此类为丁基橡胶硫磺硫化体系中辅助促进剂,主要品种有M、DM。提高焦烧安全性。用量为0.5-1份,超过1.5份会降低硫化胶的定伸应力和拉伸强度。
2、硫化体系类型
主要有三种:硫磺硫化、硫给予体硫化、低硫高促硫化体系。
(1)、硫磺硫化体系 组成为:硫磺0.75-2.0份;二硫代氨基甲酸盐或秋兰姆促进剂1.5-1.5份;噻唑类促进剂0.5-1.5份。硫化胶物理机械性能较好,但耐热性差。
(2)、硫给予体硫化体系 组成为二硫代吗啡啉和TRA2份;秋兰姆和二硫代氨基甲酸盐2份。硫化胶耐热性高,压缩永久变形小。缺点是交联不充分,拉伸强度较低,成本较高。
(3)、低硫高促硫化体系 组成为:硫磺0.3-0.5份;噻唑类促进剂0-1.0份;秋兰姆或二硫代氨基甲酸盐类促进剂3.0-4.0份。硫化胶的压缩永久变形小,耐热性好,但强度低、焦烧安全性差,配方成本较高。
(二)、醌肟硫化体系
醌肟硫化体系能有效地硫化丁基橡胶。即使双键最少的丁基橡胶也能有效的进行硫化。
1、硫化机理
对醌二肟或对-二苯甲酰苯醌二肟同丁基橡胶硫化时,先与氧或金属氧化物反应生成对二亚硝基苯,再与、异戊二烯单元的双键进行交联,形成C-N-C立体网状结构。
2、硫化组分
由硫化剂、活化剂、促进剂和防焦剂组成。
(1)、硫化剂 常用的有GMF和DBGMF。DBGMF的焦烧安全性较大。用量一般为2份(GMF)-6份(DBGMF)
(2)、活化剂 以氧化锌为主,它可以改善硫化,提高硫化胶的耐热性,但对焦烧有一定的负面影响。
(3)、促进剂 常用氧化铅、过氧化铅、四氧化三铅和DM。铅类有污染胶料的倾向,一般不用于浅色胶料。浅色胶料采用DM。
(4)、防焦剂 常用二苯硫脲、十八烷基胺和二苄胺。
(三)、树脂硫化体系

⑷ 防水橡胶布的结构设计

防水橡胶布防渗体设计:
防水橡胶布防渗体结构由基面、防水橡胶布、保护层、块石(或砼)护坡共四层组成,现将各层设计分述如下:
防水橡胶布防渗结构体剖面图(单位:mm)
①铺膜基面设计(即坝壳表面处理要求)
为防止防水橡胶布上铺填土层顺其表面滑动,增加保护层(包括护面)的稳定性,将上游铺膜坝壳表面开挖成台阶段,每级高差为0.3m,水平宽根据坡比而定,斜坡设计为1 : 1.0(如图5.5.1.3)所示,开挖成形后,将表面的砖、石块及*根树等清除干净,并用拍板将表面打紧,平整。
②防水橡胶布设计
根据表5.5.1.3的产品主要特能,结合周头水库的具体情况,设计选用WCD-1型二布一膜的防水橡胶布。
③保护层设计
防水橡胶布的防渗效果取决于施工中和运行过程中塑料膜的完好程度,为了防止人畜践踏,动植物破坏以及减少光热作用,由于它们是高分子化纤聚合物,故应特别避免阳光的直接照射,所以防水橡胶布上应铺保护层。
保护层的颗粒直径不能太大,否则会刺破防水橡胶布,一般对保护层的颗粒直径大小要按下式进行近似估算。
式中:d——保护层土料的最大颗粒直径;
k——安全系数,本工程取k=5;
[σ]——防水橡胶布的抗拉允许强度[σ]=5.5Mpa;
p——承受最大水头,取P=0.1Mpa;
——防水橡胶布厚度,取 =0.2mm(为塑膜厚度)。
将上述各数据代入上式得:
为了安全起见,要求实际土料最大颗粒直径d不大于6mm,故本工程采用筛制的粉质粘土,其它要求与坝体土料填筑要求一样。保护层取200mm,下面100mm用筛制土,上面100mm用非筛制土。对非筛制土,应挑出较大石块等其它杂物。
④护面设计
因为坝坡面是挡水建筑物,要承受风浪压力,所以必须要有护面措施,本工程设计采用干砌大块石护面。
护面块石必须坚硬、密实、能长期耐风化,并有一定有重量个体,能够承受风浪压力及水流冲刷力的作用。
护面块石的重量及Q及护面厚度参照《堤防工程设计规范》GB50286—98)中附录D.3的方法确定。计算公式:
式中:Q——主要护面层护面块石个体质量(t)
rb——人工块石的重度(KN/m3) rb=24KN/m3
r——水的重度 r=10KN/m3
H——设计坡高 H=
KD——稳定系数,KD=5.5
t——块石护面层厚度
n——护面块石层数n=1
c——系数 c=1.4
m——斜坡坡度
经计算:Q=48kg,t=0.29m,取干砌块石护面厚度t=0.3m。
为防止风浪水流将坝壳保护层粘土颗粒带走,在块石护面下铺设厚度为0.1m的碎石(砂砾石)作垫层兼反滤层。

⑸ 橡胶模具设计需要注意哪些方面

1、橡胶模具设计需要注意:
(1)搜集必要的资料,包括产品图、样品、设计任务书和专参考图等。
(2)了解制属件的生产性质是试制还是批量或大量生产,以确定模具的结构性质。
(3)分析该零件的形状特点、尺寸大小(最小孔边距、孔径、材料厚度、最大外形)、精度要求和材料性能等因素是否符合冲压工艺的要求。
(4)确定合理的冲压工艺方案。
(5)确定模具结构形式。
2、胶模具是将天然橡胶或合成橡胶制成橡胶成型件的模具。又称橡胶模具、橡胶压模、橡胶硫化模。用于压制橡胶产品的金属模型。一般用钢材按图纸要求经机械加工而制得,并经热处理以提高其硬度及耐磨性。模具型腔与产品结构相同,型腔尺寸必须考虑不同橡胶的收缩率,在产品尺寸基础上进行放大或缩小,方可得到合适的产品尺寸。
3、橡胶模具根据模具结构和制品生产工艺的不同分为:压制成型模具、压铸成型模具、注射成型模具、挤出成型模具四大常用模具,以及一些生产特种橡胶制品的特种橡胶模具,如充气模具、浸胶模具等。

⑹ 如何设计橡胶配方

橡胶配方设计的原则可以概况如下:
1、 保证硫化胶具有指定的技术性能,使产品优质;
2、 在胶料和产品制造过程中加工工艺性能良好,使产品达到高产;
3、 成本低、价格便宜;
4、 所用的生胶、聚合物和各种原材料容易得到;
5、 劳动生产率高,在加工制造过程中能耗少;
6、 符合环境保护及卫生要求;
任何一个橡胶配方都不可能在所有性能指标上达到全优。在许多情况下,配方设计应遵循如下
设计原则:
① 在不降低质量的情况下,降低胶料的成本;
② 在不提高胶料成本的情况下,提高产品质量。要使橡胶制品的性能、成本和加工工艺可
行性三方面取得最佳的综合平衡。用最少物质消耗、最短时间、最小工作量,通过科学的配方
设计方法,掌握原材料配合的内在规律,设计出实用配方。
橡胶配方的分类:
1.基础配方(又称标准配方)
2.性能配方(技术配方)
3.实用配方(生产配方)
一个完整的橡胶配方应该包括如下组分:1.主体材料(如天然橡胶、合成橡胶、橡胶与树脂共混等)2.硫化体系(硫化剂、硫化促进剂、活性剂等)3.防护体系(各种防老剂、稳定剂)4.补强与填充体系5.增塑体系(如各种软化剂、增塑剂、操作助剂等)6.特种性能体系(如防焦剂、塑解剂、分散剂、增溶剂、增硬剂、改性剂、发泡剂、着色剂、防臭剂、防粘剂、增粘剂、消泡剂、离模剂、增量剂等)生产配方出了原材料用量与配比表之外,还包含更详细的内容。如胶料的名称及代号、胶料的用途、含胶率、胶料的密度、体积成本或质量成本、胶料的工艺性能和硫化胶的物理性能等。
根据《实用橡胶工艺学》第九章 橡胶配方设计 手打。具体内容非常多,仅简要说明。

⑺ 丁腈橡胶的配方设计

(1)丁腈橡胶
丁腈橡胶密封胶选用的丁腈橡胶大多为丁腈40,40代表丙烯腈含量为40%,这种橡胶极性、弹性、粘接性等综合性能较好。其分子量大小通常以门尼黏度来表征,作为粘接密封材料的丁腈橡胶常选用门尼黏度70~80的产品。
(2)树脂
与丁腈橡胶配伍的树脂主要是酚醛树脂和环氧树脂,在密封胶中则主要是酚醛树脂。树脂在胶中的作用主要是改善胶的耐热性、粘接力、刚度和交联基团。而丁腈橡胶则主要提供胶的弹性、耐油性、耐介质和疲劳性能,两者相辅相成,使丁腈密封胶的性能更加完美。在丁腈密封胶中常用的对叔丁酚甲醛树脂(2402酚醛)是一种油溶性酚醛,溶于苯类、乙酸乙酯、环己烷、汽油和植物油,有良好的耐热、耐老化性,它与丁腈橡胶互溶性好,可以任意比例混合。它虽然自身不能硫化丁腈橡胶,但在硫化剂、促进剂存在时可以与丁腈橡胶有硫化作用。
(3)填料和补强剂
为了减少固化收缩降低成本,可加入各种无机填料,例如轻质碳酸钙、陶土、硅酸钙等,补强剂则主要用炭黑和白炭黑。
(4)溶剂丁腈橡胶常用溶剂有丁酮、甲基异丁酮、乙酸乙酯、乙酸丁酯、卤代烷烃等。
(5)其他助剂
包括防老剂(4010NA、RD等)、增强剂、增稠剂等。
典型应用配方1
材料名称 制动器摩擦块 载重刹车带(块) 柔性刹车带(块) 载重柔性刹车带(块)
石棉30~40 200 200 400
粉末丁腈橡胶 10~20 8~10 90~100 90~100
酚醛树脂7~10 80~100 40~60
黄铜切削 7~10
白碳黑7~10 5 15~20
硫磺 0.2~0.4 5 2
促进剂M 0.2~0.4 1.5 1
重晶石 130~150 15~20
摩擦粉 20~30
硬脂酸5 15~20
防焦剂 1 0.5
典型应用配方2
材料名称 挤出型材 挤出软管 汽车仪表盘 PVC垫片
粉末丁腈橡胶 15~20 40~60 20~30 15~25
增塑剂DOP 70~90 80~100 15~25 60~80
锌钡稳定剂 3 1.5 3
有机磷酸脂 1 0.5
轻钙10~20
硬脂酸钙2~4 0.5 1
着色剂2~4 0.5 2~4
环氧大豆油 4~6 4~6
硬脂酸铅 0.5
硫酸钡 4~6 1.0~2.0
ABS改性剂 2
二氧化钛 4~6
加工助剂 0.5

⑻ 国内 橡胶设计较好 的设计院有哪些 规模不用太大

国内央企直属有下面几个院(原化工部直属的)
沈阳橡胶院
北京橡胶院
西北橡胶院
株洲橡胶院
曙光橡胶院
ps:我就在其中一家工作

⑼ 橡胶筒模具设计毕业设计

先说一下橡胶挤出模吧,
橡胶挤出模具的设计与模压模具有明显的不同。对于橡胶模压模具,胶料是在模具型腔的固定包容和限制下被硫化定形,因此其制品形状与模腔的形态完全吻合,只要设计缩比正确,就能得到合格的模压制品。
与此相反,挤出模具的口型断面形状与挤出后最终得到的橡胶制品断面形状不相同,甚至有很大不同,其原因是橡胶挤出制品的硫化是在开放的微波(或其它硫化方式)硫化生产线上完成的。
然后是所料挤出模,
当今市场上出售的塑料制品中,挤出成形制品的种类日益增多。塑料管材、板材、薄膜和异形材等已在应用中占有非常重要的地位。
挤出成形是对粉末状或粒状原材料加热和熔融之后用挤压方法赋形,然后进行冷却固化的连续成形方法。故挤出成形装置必须具有熔融、赋形和固化这三种功能。
熔融功能由挤出机来承担,赋形功能由挤出模具和整形模具来承担,固化功能则由整形模具和冷却模具来承担。作为完整的挤出装置,为了对挤出物进行整理还需设置牵引机、切断机和卷曲机等辅助装置。
挤出物外观和品质的好坏,在很大程度上取决于模具的品质。此外,挤出机向模具中输送熔料的均匀程度和熔料在模具内的混合过程对挤出物的品质也会产生影响。对于各种各样断面形状的挤出物,一般沿挤出方向为同一形状的断面,但在某些特殊情况下,在模具后部设置特殊装置或采用特殊的操作方法可改变其断面形状。如:压花或吹塑成形。
近年来,除了单一材料挤出成形之外,又有多种塑料在模具内或模具外作为一体挤出成形的共挤出成形法。还开发了与铝、铁、木料等其它材料共挤出成形工艺,使挤出模具的结构也日益复杂化。
在挤出成形装置中占有重要地位的模具,由螺杆以3MPa一30MPa的压力连续对它供给熔料,并由模具使熔料形成所需断面形状的挤出物。此过程是从圆柱形料筒中送出的圆形断面熔料通过联接器进人具有圆形或矩形人口的模具中,在模具中改变形状以后即从模具终端的缝隙中挤出所需断面形状的挤出物。为此,从圆形或矩形人口到变为接近于成形物断面形状的出口部分缝隙之间的模具内熔料流动路径,需进行保证
此变化过程顺畅和无滞留部位的流线形设计。
此外,由于所用塑料熔融物为非牛顿流体,所以在具有粘性特性的同时,还有弹性特性,因此对熔料流动的特性必须充分考虑弹性所起的作用。

⑽ 橡胶底配方

  • 是想要生产的么?之前是否有相关生产经验的呢

  • 想要获取配方并不难,可以找一款合适的样品,交给化学检测机构做配方分析,通过仪器检测,微观图谱解析还原其中的配方组成。

  • 这边是专业的配方分析检测机构,后期可提供相关技术指导

热点内容
美发店认证 发布:2021-03-16 21:43:38 浏览:443
物业纠纷原因 发布:2021-03-16 21:42:46 浏览:474
全国著名不孕不育医院 发布:2021-03-16 21:42:24 浏览:679
知名明星确诊 发布:2021-03-16 21:42:04 浏览:14
ipad大专有用吗 发布:2021-03-16 21:40:58 浏览:670
公务员协议班值得吗 发布:2021-03-16 21:40:00 浏览:21
知名书店品牌 发布:2021-03-16 21:39:09 浏览:949
q雷授权码在哪里买 发布:2021-03-16 21:38:44 浏览:852
图书天猫转让 发布:2021-03-16 21:38:26 浏览:707
宝宝水杯品牌 发布:2021-03-16 21:35:56 浏览:837