多层板设计
㈠ pads多层板设计怎么设置多平面不同网络的覆铜
画了覆铜外框后就会弹出一个属性窗口,里面就有设置覆铜所要连接到的网络选项,如图:
㈡ 室内设计中,木工板和多层板常用在哪些地方怎么区分开来
木工板又称为拼基板,多层板就是一层一层的压制而成。木工板主要是用于装修中作主体的材料。柜子啊等等,多层板有好几种规格,薄厚不一样。所以多用于柜体的背板 造型或者刻槽造型的背板等等。
㈢ 求解多层PCB板和CPU多层设计的目的作用和详细解释!!
PCB 多层板是抄在电路设计中常常使用的一种技术,现在电路上器件比较多,走线复杂。尤其是一些高频信号,模拟信号,时钟信号的走线更为讲究,一般的双面板已经没法满足设计的需求。可以加群交流哈20976618
㈣ 如何使用Altium designer设计PCB多层板
单击 Design》Layer Stack Manager 菜单进入抄板层管理器对话框, 对话框中有一个
图片示例板子的信息, 在左边示例当前板层的结构, 右边是用于设置板子的高度信息。
需要添加层时在图中选中左边的板层名, 然后在管理器右边有两个按钮分别用于添加
平面层( Add Plane) 和布线层( Add Layer) 。如图:
㈤ 如何使用Altium designer设计PCB多层板
首先要确认你画几层板,新建的PCB默认的是2层板,在Design-->Layer stack manager,选中top layer,右键选择add signal layer 或者add internal plane,需要几层板就再添加几层。第三张是最简单的四层板。如果中间添加的是GND和Vcc层,可以选择add internal plane.
添加好PCB层后,最重要的就是布线了,需要在Design-->Rules里面设置好规则。这个确实不是三两句话说的清的,需要自己买书学习或者网上搜索学习资料。我只是略举例如下:
1. 按电路模块进行布局,实现同一功能的相关电路称为一个模块,电路模块中的元件应采用就近集中原则,同时数字电路和模拟电路分开;
2.定位孔、标准孔等非安装孔周围1.27mm 内不得贴装元、器件,螺钉等安装孔周围3.5mm(对于M2.5)、4mm(对于M3)内不得贴装元器件;
3. 卧装电阻、电感(插件)、电解电容等元件的下方避免布过孔,以免波峰焊后过孔与元件壳体短路;
4. 元器件的外侧距板边的距离为5mm;
5. 贴装元件焊盘的外侧与相邻插装元件的外侧距离大于2mm;
6. 金属壳体元器件和金属件(屏蔽盒等)不能与其它元器件相碰,不能紧贴印制线、焊盘,其间距应大于2mm。定位孔、紧固件安装孔、椭圆孔及板中其它方孔外侧距板边的尺寸大于3mm;
7. 发热元件不能紧邻导线和热敏元件;高热器件要均衡分布;
8. 电源插座要尽量布置在印制板的四周,电源插座与其相连的汇流条接线端应布置在同侧。特别应注意不要把电源插座及其它焊接连接器布置在连接器之间,以利于这些插座、连接器的焊接及电源线缆设计和扎线。电源插座及焊接连接器的布置间距应考虑方便电源插头的插拔;
9. 其它元器件的布置: 所有IC元件单边对齐,有极性元件极性标示明确,同一印制板上极性标示不得多于两个方向,出现两个方向时,两个方向互相垂直;
10. 板面布线应疏密得当,当疏密差别太大时应以网状铜箔填充,网格大于8mil(或0.2mm);
11.贴片焊盘上不能有通孔,以免焊膏流失造成元件虚焊。重要信号线不准从插座脚间穿过;
12.贴片单边对齐,字符方向一致,封装方向一致;
13.有极性的器件在以同一板上的极性标示方向尽量保持一致。
㈥ 如何使用Altium designer设计PCB多层板
此处使用的软件是Altium designer14版本,若是其他版本,有些步骤设置会略有差别,不可照搬,以所用软件为主。
启动软件。双击桌面Altium designer14快捷方式,打开软件。
新建一个PCB文件。File(文件)——New(新建)——PCB。
正常的做法是先新建design workspace或者新建PCB project,这里只新建PCB文件,说明如何设计多层板就可以了,所以不必新建工程。
Design(设计)——layer stack manager (层管理),打开层管理。
这是Altium designer14版本的层管理界面,注意其他版本的区别,比如Altium designer10的层管理界面如图2.可以看到Altium designer10的层管理和protel的很相近的。
在层管理中,默认有顶层底层两层,如需要设计多层板,可以通过以下方法。
1 添加内电层。内电层是整个完整的平面,是整个的覆铜的,是负片腐蚀,即有走线的地方是腐蚀掉的。可以做电源层,也可以做地层。
2.添加中间层。中间层可以作为走线来用,和普通的信号层没有什么区别,只是走线在内部了。是正片腐蚀。
电源层或地线层以及信号层的顺序以四层板为例可以为顶层——电源层——地层——底层;顶层——地层——电源层——底层。
顶层和底层主要是信号层,中间的内电层是电源和地线层。
如添加内电层。点top layer,层管理左下角,Add layer——add internal plane ,即可添加内电层,可以对此内电层重命名,如地层,也可以删除。
在添加内电层时,层的厚度,材料等根据需要填写。
层查看。快捷键L,可以看到信号层和内电层。
7
层添加好后,接下来就可以画PCB板外形,边框,然后导入网络表,布局,布线了。
㈦ 请教在PCB 多层板设计中的一些问题
是的。这些都要自己写好个 PCB生产工艺要求发给厂家。 附件发了一个模板给你,一般都是这样一个模板自己填写好给厂家就可以了
㈧ PCB多层板设计之前要注意什么
注意信号、电源、地的区域分布和层分布。
注意有有没有特殊盲孔。
注意如果有阻抗,各层间厚度需要计算。
㈨ 如何进行多层PCB抄板设计
多层板与单双面板的抄板程序是一样,无非就是重复抄几个双面板。
作为抄板界的老司机,这里主要来讲讲抄多层板的一些小技巧,也算是总结这些年来抄板的心得。
1、抄完顶底层后,用砂纸打磨,磨出内层,打磨时板子一定要按住放平,这样磨的均匀。
如果板子很小,也可以平铺砂纸,用一根手指按住板子在砂纸上磨擦,当然要点还是要铺平,这样才能磨得均匀。
2、关于多层板各层在抄板软件中套合知识分两步来讲解,一是扫描,二是抄板软件中的操作。
先说扫描,一般先扫描字符多的一面,即常说的顶层。
将顶层图片调入Quickpcb中,抄出其全部元素,完成顶层的抄板工作,保存好B2P文件。
然后将PCB翻转,扫描其反面,即底层;
由于刚才的翻转动作,得到的图象将与顶层相反,所以要到PHOTOSHOP里将这张底层的图片进行镜相操作,也就是再翻转回来,这样顶底层的图就不会相左了。
再将这样处理过的底层图片调入抄板软件,打开先前保存的B2P文件,顶层的元素尽展现在面前。
这时的B2P文件有孔、有表面贴、有线条、有丝印……,再打开层设置窗口,关闭顶层线路层与顶层丝印层,只留下多层的过孔。
这样就可以看到顶层的表面贴与走线了。
内层,也是依次类推。
比如还有三、四层,那就等于再重复一次抄顶层、底层的过程。
抄完板后得到的文件是多层本就是一体,与设计得出的文件是一样的,可以通过层的开关来显示它们。
㈩ 如何解决多层PCB电路板设计时的EMI问题
我在网络搜索答案时,找到以下内容,这些内容仅供参考,需要你自己慧眼如炬,或者去实验,看下是否正解:
解决EMI问题的办法很多,现代的EMI抑制方法包括:利用EMI抑制涂层、选用合适的EMI抑制零配件和EMI仿真设计等。本文从最基本的PCB布板出发,讨论PCB分层堆叠在控制EMI辐射中的作用和设计技巧。
电源汇流排
在IC的电源引脚附近合理地安置适当容量的电容,可使IC输出电压的跳变来得更快。然而,问题并非到此为止。由于电容呈有限频率响应的特性,这使得电容无法在全频带上生成干净地驱动IC输出所需要的谐波功率。除此之外,电源汇流排上形成的瞬态电压在去耦路径的电感两端会形成电压降,这些瞬态电压就是主要的共模EMI干扰源。我们应该怎么解决这些问题?
就我们电路板上的IC而言,IC周围的电源层可以看成是优良的高频电容器,它可以收集为干净输出提供高频能量的分立电容器所泄漏的那部份能量。此外,优良的电源层的电感要小,从而电感所合成的瞬态信号也小,进而降低共模EMI。
当然,电源层到IC电源引脚的连线必须尽可能短,因为数位信号的上升沿越来越快,最好是直接连到IC电源引脚所在的焊盘上,这要另外讨论。
为了控制共模EMI,电源层要有助于去耦和具有足够低的电感,这个电源层必须是一个设计相当好的电源层的配对。有人可能会问,好到什么程度才算好?问题的答案取决于电源的分层、层间的材料以及工作频率(即IC上升时间的函数)。通常,电源分层的间距是6mil,夹层是FR4材料,则每平方英寸电源层的等效电容约为75pF。显然,层间距越小电容越大。
上升时间为100到300ps的器件并不多,但是按照目前IC的发展速度,上升时间在100到300ps范围的器件将占有很高的比例。对于100到300ps上升时间的电路,3mil层间距对大多数应用将不再适用。那时,有必要采用层间距小于1mil的分层技术,并用介电常数很高的材料代替FR4介电材料。现在,陶瓷和加陶塑料可以满足100到300ps上升时间电路的设计要求。
尽管未来可能会采用新材料和新方法,但对于今天常见的1到3ns上升时间电路、3到6mil层间距和FR4介电材料,通常足够处理高端谐波并使瞬态信号足够低,就是说,共模EMI可以降得很低。本文给出的PCB分层堆叠设计实例将假定层间距为3到6mil。
电磁屏蔽
从信号走线来看,好的分层策略应该是把所有的信号走线放在一层或若干层,这些层紧挨着电源层或接地层。对于电源,好的分层策略应该是电源层与接地层相邻,且电源层与接地层的距离尽可能小,这就是我们所讲的“分层"策略。
PCB堆叠
什么样的堆叠策略有助于屏蔽和抑制EMI?以下分层堆叠方案假定电源电流在单一层上流动,单电压或多电压分布在同一层的不同部份。多电源层的情形稍后讨论。
4层板
4层板设计存在若干潜在问题。首先,传统的厚度为62mil的四层板,即使信号层在外层,电源和接地层在内层,电源层与接地层的间距仍然过大。
如果成本要求是第一位的,可以考虑以下两种传统4层板的替代方案。这两个方案都能改善EMI抑制的性能,但只适用于板上元件密度足够低和元件周围有足够面积(放置所要求的电源覆铜层)的场合。
第一种为首选方案,PCB的外层均为地层,中间两层均为信号/电源层。信号层上的电源用宽线走线,这可使电源电流的路径阻抗低,且信号微带路径的阻抗也低。从EMI控制的角度看,这是现有的最佳4层PCB结构。第二种方案的外层走电源和地,中间两层走信号。该方案相对传统4层板来说,改进要小一些,层间阻抗和传统的4层板一样欠佳。
如果要控制走线阻抗,上述堆叠方案都要非常小心地将走线布置在电源和接地铺铜岛的下边。另外,电源或地层上的铺铜岛之间应尽可能地互连在一起,以确保DC和低频的连接性。
6层板
如果4层板上的元件密度比较大,则最好采用6层板。但是,6层板设计中某些叠层方案对电磁场的屏蔽作用不够好,对电源汇流排瞬态信号的降低作用甚微。下面讨论两个实例。
第一例将电源和地分别放在第2和第5层,由于电源覆铜阻抗高,对控制共模EMI辐射非常不利。不过,从信号的阻抗控制观点来看,这一方法却是非常正确的。
第二例将电源和地分别放在第3和第4层,这一设计解决了电源覆铜阻抗问题,由于第1层和第6层的电磁屏蔽性能差,差模EMI增加了。如果两个外层上的信号线数量最少,走线长度很短(短于信号最高谐波波长的1/20),则这种设计可以解决差模EMI问题。将外层上的无元件和无走线区域铺铜填充并将覆铜区接地(每1/20波长为间隔),则对差模EMI的抑制特别好。如前所述,要将铺铜区与内部接地层多点相联。
通用高性能6层板设计一般将第1和第6层布为地层,第3和第4层走电源和地。由于在电源层和接地层之间是两层居中的双微带信号线层,因而EMI抑制能力是优异的。该设计的缺点在于走线层只有两层。前面介绍过,如果外层走线短且在无走线区域铺铜,则用传统的6层板也可以实现相同的堆叠。
另一种6层板布局为信号、地、信号、电源、地、信号,这可实现高级信号完整性设计所需要的环境。信号层与接地层相邻,电源层和接地层配对。显然,不足之处是层的堆叠不平衡。
这通常会给加工制造带来麻烦。解决问题的办法是将第3层所有的空白区域填铜,填铜后如果第3层的覆铜密度接近于电源层或接地层,这块板可以不严格地算作是结构平衡的电路板。填铜区必须接电源或接地。连接过孔之间的距离仍然是1/20波长,不见得处处都要连接,但理想情况下应该连接。
10层板
由于多层板之间的绝缘隔离层非常薄,所以10或12层的电路板层与层之间的阻抗非常低,只要分层和堆叠不出问题,完全可望得到优异的信号完整性。要按62mil厚度加工制造12层板,困难比较多,能够加工12层板的制造商也不多。
由于信号层和回路层之间总是隔有绝缘层,在10层板设计中分配中间6层来走信号线的方案并非最佳。另外,让信号层与回路层相邻很重要,即板布局为信号、地、信号、信号、电源、地、信号、信号、地、信号。
这一设计为信号电流及其回路电流提供了良好的通路。恰当的布线策略是,第1层沿X方向走线,第3层沿Y方向走线,第4层沿X方向走线,以此类推。直观地看走线,第1层1和第3层是一对分层组合,第4层和第7层是一对分层组合,第8层和第10层是最后一对分层组合。当需要改变走线方向时,第1层上的信号线应藉由”过孔"到第3层以后再改变方向。实际上,也许并不总能这样做,但作为设计概念还是要尽量遵守。
同样,当信号的走线方向变化时,应该藉由过孔从第8层和第10层或从第4层到第7层。这样布线可确保信号的前向通路和回路之间的耦合最紧。例如,如果信号在第1层上走线,回路在第2层且只在第2层上走线,那么第1层上的信号即使是藉由“过孔”转到了第3层上,其回路仍在第2层,从而保持低电感、大电容的特性以及良好的电磁屏蔽性能。
如果实际走线不是这样,怎么办?比如第1层上的信号线经由过孔到第10层,这时回路信号只好从第9层寻找接地平面,回路电流要找到最近的接地过孔(如电阻或电容等元件的接地引脚)。如果碰巧附近存在这样的过孔,则真的走运。假如没有这样近的过孔可用,电感就会变大,电容要减小,EMI一定会增加。
当信号线必须经由过孔离开现在的一对布线层到其他布线层时,应就近在过孔旁放置接地过孔,这样可以使回路信号顺利返回恰当的接地层。对于第4层和第7层分层组合,信号回路将从电源层或接地层(即第5层或第6层)返回,因为电源层和接地层之间的电容耦合良好,信号容易传输。
多电源层的设计
如果同一电压源的两个电源层需要输出大电流,则电路板应布成两组电源层和接地层。在这种情况下,每对电源层和接地层之间都放置了绝缘层。这样就得到我们期望的等分电流的两对阻抗相等的电源汇流排。如果电源层的堆叠造成阻抗不相等,则分流就不均匀,瞬态电压将大得多,并且EMI会急剧增加。
如果电路板上存在多个数值不同的电源电压,则相应地需要多个电源层,要牢记为不同的电源创建各自配对的电源层和接地层。在上述两种情况下,确定配对电源层和接地层在电路板的位置时,切记制造商对平衡结构的要求。
总结
鉴于大多数工程师设计的电路板是厚度62mil、不带盲孔或埋孔的传统印制电路板,本文关于电路板分层和堆叠的讨论都局限于此。厚度差别太大的电路板,本文推荐的分层方案可能不理想。此外,带盲孔或埋孔的电路板的加工制程不同,本文的分层方法也不适用。
电路板设计中厚度、过孔制程和电路板的层数不是解决问题的关键,优良的分层堆叠是保证电源汇流排的旁路和去耦、使电源层或接地层上的瞬态电压最小并将信号和电源的电磁场屏蔽起来的关键。理想情况下,信号走线层与其回路接地层之间应该有一个绝缘隔离层,配对的层间距(或一对以上)应该越小越好。根据这些基本概念和原则,才能设计出总能达到设计要求的电路板。现在,IC的上升时间已经很短并将更短,本文讨论的技术对解决EMI屏蔽问题是必不可少的。