当前位置:首页 » 软件设计 » 带轮课程设计

带轮课程设计

发布时间: 2020-11-25 20:39:07

A. 求 齿轮减速器传动设计说明书装配图,零件图 做课程设计,满意答复追加50分。

单级斜齿圆柱减速器设计说明书

院(系) 机械与汽车工程学院
专 业
班 级
学 号
姓 名

专业教研室、研究所负责人
指导教师
年 月 日
XXXXXXX 大 学
课 程 设 计 ( 论 文 ) 任 务 书

兹发给 车辆工程 班学生 课程设计(论文)任务书,内容如下:
1. 设计题目:V带——单级斜齿圆柱减速器
2. 应完成的项目:
(1) 减速器的总装配图一张(A1)
(2) 齿轮零件图 一张(A3)
(3) 轴零件图一张(A3)
(4) 设计说明书一份
3. 本设计(论文)任务书于2008 年 月 日发出,应于2008 年 月 日前完成,然后进行答辩。
专业教研室、研究所负责人 审核 年 月 日
指导教师 签发 年 月 日

程设计(论文)评语:课程设计(论文)总评成绩:
课程设计(论文)答辩负责人签字:
年 月 日

目 录

一. 传动方案的确定―――――――――――――――5
二. 原始数据――――――――――――――――――5
三. 确定电动机的型号――――――――――――――5
四. 确定传动装置的总传动比及分配――――――――6
五. 传动零件的设计计算―――――――――――――7
六. 减速器铸造箱体的主要结构尺寸设计――――――13
七. 轴的设计――――――――――――――――――14
八. 滚动轴承的选择和计算――――――――――――19
九. 键联接的选择和强度校核―――――――――――22
十. 联轴器的选择和计算―――――――――――――22
十一. 减速器的润滑―――――――――――――――22
十二. 参考文献―――――――――――――――――2计算过程及计算说明
一、传动方案拟定二、原始数据:
带拉力:F=5700N, 带速度:v=2.28m/s, 滚筒直径:D=455mm
运输带的效率: 工作时载荷有轻微冲击;室内工作,水份和灰份为正常状态,产品生产批量为成批生产,允许总速比误差 4%,要求齿轮使用寿命为10年,二班工作制;轴承使用寿命不小于15000小时。

三、电动机选择
(1) 选择电动机类型: 选用Y系列三相异步电动机
(2) 选择电动机功率::
运输机主轴上所需要的功率:
传动装置的总效率:
, , , , 分别是:V带传动,齿轮传动(闭式,精度等级为8),圆锥滚子轴承(滚子轴承一对),联轴器(刚性联轴器),运输带的效率。查《课程设计》表2-3,
取:
所以:
电动机所需功率: ,
查《课程设计》表16-1 取电动机Y200L1-6的额定功率
(3)选择电动机的转速
取V带传动比范围(表2-2) ≤2~4;单级齿轮减速器传动比 =3~6
滚筒的转速:
电动机的合理同步转速:
查表16-1得电动机得型号和主要数据如下(同步转速符合)
电动机型号 额定功率(kW) 同步转速(r/min) 满载转速nm
(r/min) 堵载转矩
额定转矩 最大转矩
额定转矩
Y200L1-6 18.5 1000 970 1.8 2.0
查表16-2得电动机得安装及有关尺寸
中心高
H 外形尺寸
底脚安装尺寸
地脚螺栓孔直径
轴伸尺寸
键公称尺寸
200 775×(0.5×400+310) ×310 318×305 19 55×110 16×
五、计算总传动比及分配各级的传动比
传动装置得总传动比 :
取V带传动比: ;单级圆柱齿轮减速器传动比:
(1) 计算各轴得输入功率
电动机轴:
轴Ⅰ(减速器高速轴):
轴Ⅱ(减速器低速轴):
(2) 计算各轴得转速
电动机轴:
轴Ⅰ :
轴Ⅱ :
(3)计算各轴得转矩
电动机轴
轴Ⅰ :
轴Ⅱ :
上述数据制表如下:
参数
轴名 输入功率
( )
转速
( )
输入转矩
( )
传动比
效率
电动机轴 15.136 970 182.14 1.6893 0.95
轴Ⅰ(减速器高速轴) 14.379 574.20 239.15 6 0.97
轴Ⅱ(减速器低速轴) 13.669 95.70 1364.07
五、传动零件的设计计算
1. 普通V带传动得设计计算
① 确定计算功率
则: ,式中,工作情况系数取 =1.3
② 根据计算功率 与小带轮的转速 ,查《机械设计基础》图10-10,选择SPA型窄V带。
③ 确定带轮的基准直径
取小带轮直径: ,
大带轮直径 :
根据国标:GB/T 13575.1-1992 取大带轮的直径
④ 验证带速:
在 之间。故带的速度合适。
⑤确定V带的基准直径和传动中心距
初选传动中心距范围为: ,初定
V带的基准长度:

查《机械设计》表2.3,选取带的基准直径长度
实际中心距:
⑥ 验算主动轮的最小包角
故主动轮上的包角合适。
⑦ 计算V带的根数z
,由 , ,
查《机械设计》表2.5a,得 ,由 ,查表2.5c,得额定功率的增量: ,查表2.8,得 ,查表2.9,得
, 取 根。
⑧ 计算V带的合适初拉力
查《机械设计》表2.2,取

⑨ 计算作用在轴上的载荷 :

⑩ 带轮的结构设计 (单位)mm
带轮
尺寸
小带轮
槽型 C
基准宽度
11
基准线上槽深
2.75
基准线下槽深
11.0
槽间距
15.0 0.3

槽边距
9
轮缘厚
10
外径
内径
40
带轮宽度
带轮结构 腹板式
V带轮采用铸铁HT150或HT200制造,其允许的最大圆周速度为25m/s.
2. 齿轮传动设计计算
(1)择齿轮类型,材料,精度,及参数
① 选用斜齿圆柱齿轮传动(外啮合);
② 选择齿轮材料:由课本附表1.1选大、小齿轮的材料均为45钢,并经调质后表面淬火,齿面硬度为HRC1=HRC2=45;
③ 选取齿轮为7级的精度(GB 10095-88);
④ 初选螺旋角
⑤ 选 小齿轮的齿数 ;大齿轮的齿数
(2)按齿面接触疲劳强度设计
由设计计算公式进行试算,即
A. 确定公式内各个计算数值
① 试选载荷系数Kt=1.5
② 小齿轮传递的转矩:
③ 由《机械设计》表12.5得齿宽系数 (对硬齿面齿轮, 取值偏下极限)
④ 由《机械设计》表12.4弹性影响系数
⑤ 节点区域系数
所以,得到 =2.4758
⑥ 端面重合度



代入上式可得:
⑦ 接触疲劳强度极限σHlim1=σHlim2=1000Mpa (图12.6)
⑧ 应力循环次数
N1=60 nⅠjLh=60x574.20x1x(2x8x300x10)=16.5x108
N2= N1/i2=16.5x108/6=2.75x108
⑨ 接触疲劳寿命系数 根据图12.4
⑩ 接触疲劳许用应力 取
=0.91 1000/1.2Mpa=758.33 MPa
=0.96 1000/1.2Mpa=800 Mpa
因为 =779.165MPa<1.23 =984MPa, 故取 =779.165 Mpa

B. 计算
① 试算小齿轮分度圆

② 计算圆周速度: =
③ 计算齿宽: = 1 57.24 = 57.24 mm
④ 齿宽与齿高之比:
/(2.25 )
⑤ 计算载荷系数K
根据v=2.28m/s,7级精度,由附图12.1查得动载系数 =1.07
由附表12.2查得 ; 由附表12.1查得 .25
参考课本附表12.3中6级精度公式,估计 <1.34,对称
1.313取 =1.313
由附图12.2查得径向载荷分布系数 =1.26
载荷系数
⑥ 按实际的载荷系数修正分度圆直径

⑦ 计算模数

3、按齿根弯曲疲劳强度设计

A. 确定公式中的各参数
① 载荷系数K:

② 齿形系数 和应力校正系数
当量齿数 = =21.6252,
= =112.2453

③ 螺旋角影响系数
轴面重合度 = =0.9385
取 =1得 =0.9374
④ 许用弯曲应力

查课本附图6.5得 ,取 =1.4,则
=0.86 500/1.4Mpa=307 Mpa
=0.88 500/1.4Mpa=314 Mpa
⑤ 确定
=2.73 1.57/307=0.01396
=2.17 1.80/314=0.01244
以 代入公式计算
B. 计算模数mn

比较两种强度计算结果,确定

4、几何尺寸的计算
① 中心距 =3 (21+126)/ (2cos80)=223mm
取中心距
② 修正螺旋角:

③ 分度圆直径:

④ 齿宽 ,取B2=65 mm,B1=70 mm
⑤ 齿轮传动的几何尺寸,制表如下:(详细见零件图)
名称 代号 计算公式 结果
小齿轮 大齿轮
中心距

223 mm
传动比

6
法面模数
设计和校核得出 3
端面模数

3.034
法面压力角
螺旋角
一般为
齿顶高
3mm
齿根高
3.75mm
全齿高
6.75mm
顶隙 c
0.75mm
齿数 Z
21 126
分度圆直径
64.188mm 382.262 mm
齿顶圆直径
70.188 mm 388.262mm
齿根圆直径
57.188 mm 375.262 mm
齿轮宽 b
70mm 65mm
螺旋角方向
左旋 右旋
六、减速器铸造箱体的主要结构尺寸设计
查《设计基础》表3-1经验公式,及结果列于下表。
名称 代号 尺寸计算 结果(mm)
底座壁厚
8
箱盖壁厚

8
底座上部凸圆厚度

12
箱盖凸圆厚度

12
底座下部凸圆厚度

20
底座加强筋厚度 e
8
底盖加强筋厚度

7
地脚螺栓直径 d 或表3.4
16
地脚螺栓数目 n 表3--4 6
轴承座联接螺栓直径
0.75d 12
箱座与箱盖联接螺栓直径
(0.5—0.6)d 8
轴承盖固定螺钉直径
(0.4—0.5)d 8
视孔盖固定螺钉直径
(0.3—0.4)d 5
轴承盖螺钉分布圆直径

155/140
轴承座凸缘端面直径

185/170
螺栓孔凸缘的配置尺寸
表3--2 22,18,30
地脚螺栓孔凸缘配置尺寸
表3--3 25,23,45
箱体内壁与齿轮距离

12
箱体内壁与齿轮端面距离

10
底座深度 H
244
外箱壁至轴承端面距离

45

七、轴的设计计算
1. 高速轴的设计
① 选择轴的材料:选取45号钢,调质,HBS=230
② 初步估算轴的最小直径
根据教材公式,取 =110,则: =32.182mm

因为与V带联接处有一键槽,所以直径应增大5%
③ 轴的结构设计:
考虑带轮的机构要求和轴的刚度,取装带轮处轴径 ,根据密封件的尺寸,选取装轴承处的轴径为:
两轴承支点间的距离: ,
式中: ―――――小齿轮齿宽,
―――――― 箱体内壁与小齿轮端面的间隙,
――――――― 箱体内壁与轴承端面的距离,
――――― 轴承宽度,选取30310圆锥滚子轴承,查表13-1,得到
得到:
带轮对称线到轴承支点的距离
式中: ------------轴承盖高度,
t ――――轴承盖的凸缘厚度, ,故,
―――――螺栓头端面至带轮端面的距离,
―――――轴承盖M8螺栓头的高度,查表可得 mm
――――带轮宽度,
得到:
2.按弯扭合成应力校核轴的强度。
①计算作用在轴上的力
小齿轮受力分析
圆周力:
径向力:
轴向力:
②计算支反力
水平面:
垂直面:

所以:

③ 作弯矩图
水平面弯矩:
垂直面弯矩:

合成弯矩:

④ 作转矩图 (见P22页) T1=239.15Nm
当扭转剪力为脉动循环应变力时,取系数 ,
则:
⑤ 按弯扭合成应力校核轴的强度
轴的材料是45号钢,调质处理,其拉伸强度极限 ,对称循环变应力时的许用应力 。
由弯矩图可以知道,A剖面的计算弯矩最大 ,该处的计算应力为:

D 剖面的轴径最小,该处的计算应力为:
(安全)
⑥ 轴的结构图见零件图所示

2.低速轴的设计

(1).选择轴的材料:选择45号钢,调质,HBS=230
(2). 初步估算轴的最小直径:取A=110,
两个键,所以 mm
考虑联轴器的机构要求和轴的刚度,取装联轴器处轴径 ,根据密封件的尺寸,选取装轴承处的轴径为: 选30214 轴承 T=26.25

(3).轴的结构设计,初定轴径及轴向尺寸:考虑

---螺栓头端面至带轮端面的距离,
k ----轴承盖M12螺栓头的高度,查表可得k=7.5mm ,选用6个
L---轴联轴器长度,L=125mm
得到:

(4).按弯曲合成应力校核轴的强度

①计算作用的轴上的力
齿轮受力分析:圆周力: N
径向力:
轴向力:
③ 计算支反力:
水平面:
垂直面: ,



③ 作弯矩图
水平面弯矩:
垂直面弯矩:

合成弯矩:

④ 作转矩图 T2=1364.07Nm
当扭转剪力为脉动循环应变力时,取系数 , 则:

⑤ 按弯扭合成应力校核轴的强度
轴的材料是45号钢,调质处理,其拉伸强度极限 ,对称循环变应力时的许用应力 。
由弯矩图可以知道,C剖面的计算弯矩最大 ,该处的计算应力为:

D 剖面的轴径最小,该处的计算应力为:
(安全)
(5)轴的结构图见零件图所示:

八、滚动轴承的选择和计算
1.高速轴滚动轴承的选择和寿命计算

① 选取的轴承:型号为30310圆锥滚子轴承(每根轴上安装一对)
②轴承A的径向载荷
轴承B的径向载荷:

对于30310型圆锥滚子轴承,其内部派生轴向力

所以轴承A被“放松”,而轴承B被“压紧”,则

计算当量动载荷

对于轴承1
对于轴承2 (根据《机械设计》表9.1)
轴向载荷:

因为 ,按照轴承 A验算寿命

(由表13-1可查C=122kN)
故满足寿命要求

2. 低速轴滚动轴承的选择和寿命计算

①选取的轴承:型号为30214圆锥滚子轴承

B. 机械设计课程设计带式输送机蜗轮蜗杆减速器

找书,书上有例题直接套公式。联轴器是查表来的 。
我这几天也在做,就差画图了。

C. 急求:一级圆柱齿轮减速器课程设计详细过程

课程设计说明书

设计题目:带式运输及传动装置

机械设计制造及其自动化**(*)班

姓名:

学号:************

完成日期:****.**.**

指导教师(签字):

目 录

1.设计任务书………………………………………………………………………………………………….3

2.传动方案的分析与拟定………………………………………………………………………………….4

3.电动的选择………………………………………………………………………………………………….5

4.传动装置的运动及动力参数的选择和计算……………………………………………………….5

5.传动零件的设计计算…………………………………………………………………………………….6

6.轴的设计计算……………………………………………………………………………………………..9

7.键连接的选择及计算……………………………………………………………………………….….12

8.滚动轴承的选择及计算………………………………………………………………………….…...14

9.联轴器的选择……………………………………………………………………………….…………….14

10.润滑和密封方式的选择………………………………………………………………..…………….14

11.箱体及附件的结构设计和选择……………………………………………………….…………….15

12.参考文献…………………………………………………………………………………..….………….15

一.设计任务书
设计题目:皮带运输机用
单级 斜齿 圆柱 齿轮减速器设计

目的:前修课程的实际应用
巩固专业理论和知识
培养设计计算能力
培养工程设计的综合能力
培养解决实际问题的能力
提高计算机绘图能力
齿轮减速器:圆柱 圆锥 蜗轮蜗杆
单级 双级 多级(见图)

设计任务:
方案的构思与设计计算
装配图一 1号 草图和机绘图各一份
零件图1张 3号
设计说明书一份 20页以上
答辩 20分钟

内容与进度
1.方案设计
2.总体设计计算
3.主要零件设计计算
开式齿轮、带、链 闭式齿轮 轴、滚动轴承、 键…….…2天
4.装配草图设计、绘制……………………………………………………………6天
5.正式装配图、零件图绘制…………………………………………………….6天
6.设计说明书撰写………………………………………………………………….1天
7.答辩……………………………………………………………………….…………1天

题目与数据:
开式齿轮传动+单级斜齿圆柱齿轮减速器
已知数据: F(N)=2600 V(m/s)=1.8 D(mm)= 500
五年两班 中等冲击

二.传动方案的分析与拟定
1.传动简图设计
布局
带在高速级
链传动在低速级
开式齿轮传动在低速级
一根轴必须两个轴承支撑
合理性
齿轮润滑效果
带、链的松紧边
结构的紧凑性

三. 电动的选择
工作机所需功率: Pw=FV/1000=2600×1.8/1000=4.68kw
传动效率: 由表2-2得
η=η1×η2×η3……=0.99²×0.97×0.994×0.95×0.96=0.8329
电机所需功率: Pm’=Pw/η=4.68/0.8329=5.619kw
电机额定功率: 由表16-1得
Pm≥Pm’=7.5kw
初选电机: Y132M-4 额定功率7.5kw 满载转速970r/min
堵转转矩/额定转矩2.0 最大转矩/额定转矩2.0

四. 传动装置的运动及动力参数的选择和计算
1.传动比计算与分配
工作机转速: v=πDn/60000
n=60000v/πD=68.75
总传动比计算: i=N/n=1440/68.75=14.11
开式齿轮传动: i2=4-5
闭式齿轮传动比: i1=3-4.5
传动比分配: i1=105/31=3.387 i2=71/17=4.176
i=i1×i2=3.387×4.176=14.14

3.各轴的功率、转速、转矩计算( Pn 、nn 、Tn )
n1=nm=970r/min P1=Pm×η1=7.425kw
T1=9550P1/n1=73.10Nm
n2=n1/i1=286.4r/min P2=P1×η2×η3=7.130kw
T2=9550P2/n2=237.7Nm
n3=n2/i2=286.4r/min P3=P2×η3×η1=6.988kw
T3=9550P3/n3=233.0Nm
轴号 转速n 功率p 转矩T 传动比i
Ⅰ 970r/min 7.425kw 73.10N*m
3.387
Ⅱ 286.4r/min 7.130kw 237.7N*m

1
Ⅲ 286.4r/min 6.988kw 233.0N*m

五.传动零件的设计计算
1. 闭式齿轮设计计算
1)使用条件分析
传递功率: P1=7.425kw 主动轮转速: n1=970r/min
传动比: i1=3.387 转矩: T1=73.10N*m
2)选择齿轮材料及热处理方式
小齿轮:45号钢,调质处理,硬度为230-255HBS;
大齿轮:45号钢,正火处理,硬度为190-217HBS.
3)确定许用应力
a.确定极限应力σHlim和σFlim
齿面硬度:小齿轮按230HBS,大齿轮按190HBS.
查图3-16,得σHlim1=580MPa, σHlim2=550 MPa
查图3-17,得σFlim1=220MPa, σFlim2=210 MPa
b.计算应力循环次数N,缺点寿命系数ZN及YN
N1=60an1t=60×1×970×(5×300×16)=1.397×109
N2= N1/i1=5.719×108
查图3-18,得ZN1=ZN2=1;查图3-19,得YN1=YN2=1
c.计算许用应力
由表3-4取SHlim=1, SFlim=1.4
σHP1=σHP1 ZN1/ SHlim=580 MPa
σHP2=σHP2 ZN2/ SHlim=550 MPa
σFP1=σFlim1 YST YN1/ SFlim =314.28 MPa
σFP2=σFlim2 YST YN2/ SFlim =300 MPa
4)初步确定齿轮的基本参数和主要尺寸
a.选择齿轮类型
拟选用斜齿圆柱齿轮,由表3-5初步选用8级精度
b.初选参数
β=15°,z1=31 , z2=z1×i1=105 , x1=x2=0 , ψd=0.9
c.初步计算齿轮的主要尺寸
因电机驱动,工作载荷中等冲击,查表3-1,得KA=1.5,取Kv=1.05;
因对称布置,轴的刚性较大,取Kβ=1,Kα=1.2,
则 K=1.5×1.05×1×1.2=1.89
由图3-11,查得ZH=2.44;
查表3-2,得ZE=189.8 MPa½;
取Zε=0.8 ; Zβ=(cosβ)½=0.983
可初步计算出齿轮的分度圆直径d1,mn等主要参数和几何尺寸:
d1=³√{(ZHZEZεZβ/σHP)²*(2KT1/ψd)*〔( i1+1)/ i1)〕}
=55.87
mn=d1cosβ/z1=1.741
按表3-17,取标准模数mn=2mm
a=(mn/2 cosβ)( z1+ z2)=140.8mm
圆整后取a=140mm
修改螺旋角:
β=arccos〔mn (z1+ z2)/2a〕=13.73°=13°43′48〃
d1= mn z1/ cosβ=63.8mm
d2= mn z2/ cosβ=216.2mm
b=ψd d1 =57.42mm,取b2=58mm, b1= b2+(5~10)=66mm
d.验算齿轮的弯曲强度条件
计算当量齿数:
zv1= z1/ cos³β=33.8
zv2= z2/ cos³β=114.5
查图3-14,得YFa1=2.5 , YFa2=2.2;
查图3-15,得YSa1=1.69 , YSa2=1.81
取Yε=0.7 , Yβ=0.9
计算弯曲应力:
σF1=2K T1/b d1 mn =66.25 MPa<σFP1
σF2=σF1 YFa2 YSa2/ YFa1 YSa1=62.44 MPa<σFP2

5)确定方案
设计内容 参数
小,大齿轮材料 钢45 ,钢45
小,大齿轮热处理方式 调质 ,正火
小,大齿轮齿面硬度HBS 230 ,190
接触许用应力: σHP1/ MPa ,σHP2/ MPa 580 ,550
弯曲许用应力: σFP1/ MPa ,σFP2/ MPa 314.3 ,300
模数:mn /mm 2
螺旋角β/(°′〃): 13°43′48〃
齿数:z1 ,z2 31 ,105
变位系数:x1 , x2 0.0 ,0.0
齿宽:b1/mm , b2/mm 66 , 58
分度圆直径:d1/mm , d2/mm 63.8 , 216.2
齿顶圆直径:d a 1/mm , d a 2/mm 67.92 ,220.3
中心距:a/mm 140
弯曲应力: σF1/ MPa ,σF2/ MPa 66.25 , 62.44

2.开式齿轮设计计算
1)使用条件分析
传递功率: P3=6.988kw 主动轮转速: n1=286.4r/min
传动比: i2=4.176 转矩: T3=233.0N*m
2)选择齿轮材料及热处理方式
小齿轮:45号钢,表面淬火,硬度为40-50HRC ,
大齿轮:球墨铸铁,正火,硬度为190-270HBS
3)确定许用应力
a.确定极限应力σFlim
齿面硬度:小齿轮按46HRC , 大齿轮按 250HBS .
查图3-17,得σFlim1= 360 Mpa ,σFlim2=230 Mpa
b.计算应力循环次数N,缺点寿命系数ZN及YN
N1=60an1t=60×1×970×(5×300×16)=1.397×109
N2= N1/i1=5.719*108
查图3-18,得ZN1=ZN2=1;查图3-19,得YN1=YN2=1
c.计算许用应力
由表3-4取SFlim=1.4
σFP1=σFlim1 YST YN1/ SFlim =514.3 Mpa
σFP2=σFlim2 YST YN2/ SFlim =328.6 MPa
4)初步确定齿轮的基本参数和主要尺寸
a.选择齿轮类型
拟选用斜齿圆柱齿轮,由表3-5初步选用8级精度
b.初选参数
β=12°,z1=17 , z2=z1×i1=71 , x1=x2=0 , ψd=0.3
c.初步计算齿轮的主要尺寸
因电机驱动,工作载荷中等冲击,查表3-1,得KA=1.5,取Kv=1.05;
因不对称布置,轴的刚性较小,取Kβ=1.35 , Kα=1.4,
则 K=1.5×1.05×1.35×1.4=2.98
计算当量齿数:
zv1= z1/ cos³β=18.12
zv2= z2/ cos³β=75.87
查图3-14,查得YFa1=2.92 , YFa2=2.25 ;
查图3-15,查得YSa1=1.52 , YSa2=1.81 ;
取Yε=0.8 , Yβ=0.92 ;
则:YFa1 YSa1/σFP1=8.63×10^-3 ;
YFa2 YSa2/σFP2=12.4×10^-3
取较大值 12.39*10^-3 计算
可初步计算出齿轮的模数mn :
mn≥(1+15%)³√〔(2K T3 cos²βYεYβ/ψd z1²)×(YFa1 YSa1/σFP1)〕
=5.97
又 a=(mn/2 cosβ)( z1+ z2)≥ D/2
则 mn≥ D cosβ/ (z1+ z2)=5.56
按表3-17,取标准模数mn=6mm
a=(mn/2 cosβ)( z1+ z2)=269.9mm
圆整后取a=270mm
修改螺旋角:β=arccos〔mn (z1+ z2)/2a〕=12.1°=1°6′
d1= mn z1/ cosβ=104.3mm
d2= mn z2/ cosβ=435.7mm
b=ψd d1 =31.29mm,
取b2=32mm, b1= b2+(5~10)=40mm

5)确定方案
设计内容 参数
小,大齿轮材料 钢45 ,球墨铸铁
小,大齿轮热处理方式 表面淬火,正火
小,大齿轮齿面硬度HRC ,HBS 46 ,250
弯曲许用应力: σFP1/ MPa ,σFP2/ MPa 514.3 ,328.6
模数:mn /mm 6
螺旋角β/(°′〃): 12°6′
齿数:z1 ,z2 17 ,71
变位系数:x1 , x2 0.0 ,0.0
齿宽:b1/mm , b2/mm 32 , 40
分度圆直径:d1/mm , d2/mm 104.3 , 435.7
齿顶圆直径:d a 1/mm , d a 2/mm 116.6 ,448.0
中心距:a/mm 270

六.轴的设计计算
1输入轴的设计计算
1)按扭矩初算轴径
选用45#调质,硬度217~255HBS
根据课本P235(10-2)式,并查表10-2,取c=110
D≥C (P/n)1/3=110* (7.425/970)1/3mm
=21.68mm
考虑有键槽,将直径增大5%,则
d=19.7×(1+5%)mm=24.93
又根据联轴器参数选:d1=30mm

2)轴的结构设计
a.轴上零件的定位,固定和装配
单级减速器中可将齿轮安排在箱体中央,相对两轴承对称分布,齿轮左面由轴肩定位,右面用套筒轴向固定,联接以平键作过渡配合固定,两轴承分别以轴肩和大筒定位,则采用过渡配合固定
b.确定轴各段直径和长度
Ⅰ段:D1=30mm 长度取L1=82mm
∵h=2 c=2mm
Ⅱ段:D2=D1+2h=30+2×2=34mm
∴D2=34mm
初选用7208c型角接触球轴承,其内径为40mm,宽度为18mm.
取Ⅱ段长:L2=70mm
Ⅲ段直径D3=40mm , L3=18+2=20mm
Ⅳ段直径D4=44mm , L4=13mm
Ⅴ段有小齿轮决定
Ⅵ段同Ⅳ段
Ⅶ段D7= D3+C=22mm
由上述轴各段长度可算得轴支承跨距L=110mm
c.按弯矩复合强度计算
①求分度圆直径:已知D1=62mm
②求转矩:已知T1=73100N•mm
③求圆周力:Ft
根据课本P127(6-34)式得
Ft=2T1/d1=2358N
④求径向力Fr
根据课本P127(6-35)式得
Fr=Ft•tanα/cosβ=858.2N
⑤因为该轴两轴承对称,所以:LA=LB=55mm
(1) 绘制轴受力简图(如图a)
(2)绘制垂直面弯矩图(如图b)
轴承支反力:FAY=FBY=Fr/2=429.1N
FAZ=FBZ=Ft/2=1179N
由两边对称,知截面C的弯矩也对称。截面C在垂直面弯矩为
MC1=FAYL/2=429.1×55=23.6N•m

(3)绘制水平面弯矩图(如图c)
截面C在水平面上弯矩为:
MC2=FAZL/2=1179×55=64.8N•m
(4)绘制合弯矩图(如图d)
MC=(MC12+MC22)1/2=(23.62+64.82)1/2=69.0N•m
(5)绘制扭矩图(如图e)
转矩:T1=73.10N•m
(6)绘制当量弯矩图(如图f)
转矩产生的扭剪力按脉动循环变化,取α=0.6,截面C处的当量弯矩: Mec=[MC2+(αT1)2]1/2
=[69.02+(0.6×73.1)2]1/2=81.76N•m
(7)校核危险截面C的强度
由式(6-3)
σe=Mec/0.1d33=81.76/(0.1×403)
=12.78MPa< [σ-1]b=60MPa
∴该轴强度足够。

2.输出轴的设计计算
1)按扭矩初算轴径
选用45#调质钢,硬度(217~255HBS)
根据课本P235页式(10-2),表(10-2)取c=110
D≥C(P2/n2)1/3=110(7.130/286.4)1/3=32.12mm
考虑有两键槽,将直径增大10%,则
d=32.12×(1+10%)mm=35.33
又根据联轴器参数选:D=38mm
2)轴的结构设计
a.轴的零件定位,固定和装配
单级减速器中,可以将齿轮安排在箱体中央,相对两轴承对称分布,齿轮左面用轴肩定位,右面用套筒轴向定位,周向定位采用键和过渡配合,两轴承分别以轴承肩和套筒定位,周向定位则用过渡配合或过盈配合,轴呈阶状,左轴承从左面装入,齿轮套筒,右轴承和皮带轮依次从右面装入。
b.确定轴的各段直径和长度
初选7210AC型角接球轴承,其内径为50mm,宽度为20mm。考虑齿轮端面和箱体内壁,轴承端面与箱体内壁应有一定矩离,则取套筒长为13mm,则该段长68mm,安装齿轮段长度为轮毂宽度为2mm。
c.按弯扭复合强度计算
①求分度圆直径:已知d2=210mm
②求转矩:已知T2=237.7N•m
③求圆周力Ft:根据课本P127(6-34)式得
Ft=2T2/d2=2×237.7×103/210=2264N
④求径向力Fr根据课本P127(6-35)式得
Fr=Ft•tanα/cosβ=824.0N
⑤∵两轴承对称
∴LA=LB=56mm
(1)求支反力FAX、FBY、FAZ、FBZ
FAX=FBY=Fr/2=824.0/2=412.0N
FAZ=FBZ=Ft/2=2264/2=1132N
(2)由两边对称,书籍截C的弯矩也对称
截面C在垂直面弯矩为
MC1=FAXL/2=412.0×56=23.07N•m
(3)截面C在水平面弯矩为
MC2=FAZL/2=1132×56=63.39N•m
(4)计算合成弯矩
MC=(MC12+MC22)1/2
=(23.072+63.392)1/2
=67.46N•m
(5)计算当量弯矩:根据课本P235得α=0.6
Mec=[MC2+(αT2)2]1/2=[67.462+(0.6×237.7)2]1/2
=157.8N•m
(6)校核危险截面C的强度
由式(10-3)
σe=Mec/(0.1d2)=157.8/(0.1×563)
=8.986Mpa<[σ-1]b=60Mpa
∴此轴强度足够

七.滚动轴承的选择及校核计算
根据根据条件,轴承预计寿命:16×300×5=24000小时
1.计算输入轴承
1)已知n1=970r/min
两轴承径向反力:FR1=FR2=1179N
初先两轴承为角接触球轴承7208AC型
根据课本P265(11-12)得轴承内部轴向力
FS=0.63FR 则FS1=FS2=0.63FR1=742.8N
2) Fa= Ft×tanβ=576.1
FS1+Fa>FS2
1端压紧 2端放松
两轴承轴向载荷:FA1=FS1=742.8N
FA2= FS1+Fa =1319N
3) 求系数x、y
FA1/FR1=742.8N/1179N=0.63
FA2/FR2=1319/1179N=1.12
根据课本P263表(11-8)得e=0.68
FA1/FR1<e x1=1 y1=0
FA2/FR2>e x2=0.41 y2=0.87
4) 计算当量载荷P1、P2
根据课本P263表(11-9)取f P=1.5
根据课本P262(11-6)式得
P1=fP(x1FR1+y1FA1)= 1179N
P2=fp(x2FR2+y2FA2)= 2446N
5) 轴承寿命计算
∵P1<P2 故取P=2446N
∵角接触球轴承ε=3
根据手册得7208AC型的Cr=35200N
由课本P264(11-10c)式得
LH=106/60n(ftCr/P)ε
=55620h>24000h
∴预期寿命足够

2. 计算输出轴承
1) 已知n2=286.4r/min
Fa= Ft×tanβ=553.2 FR=FAZ=1132N
试选7210AC型角接触球轴承
根据课本P265表(11-12)得FS=0.63FR,则
FS1=FS2=0.63FR=0.63×1132=713.2N
2) 计算轴向载荷FA1、FA2
FS1+Fa>FS2
1压紧 2放松
两轴承轴向载荷:FA1= FS1=713.2N
FA2= FS1+Fa =1319N
3) 求系数x、y
FA1/FR1=713.2/1132=0.63
FA2/FR2=1319/1132=0.63
根据课本P263表(11-8)得:e=0.68
∵FA1/FR1<e ∴x1=1 y1=0
∵FA2/FR2>e ∴x2=0.41 y2=0.87
4) 计算当量动载荷P1、P2
根据表(11-9)取fP=1.5
根据式(11-6)得
P1=fP(x1FR1+y1FA1)=1698N
P2=fP(x2FR2+y2FA2)=2417N
5) 计算轴承寿命LH
∵P1>P2 故P=2417 ε=3
根据手册P119 7207AC型轴承Cr=40800N
根据课本P264 得:ft=1
根据课本P264 式得
Lh=106/60n(ftCr/P)ε
=280000h>24000h
∴预期寿命足够

八.键联接的选择及校核计算
1.输入轴与联轴器联接采用平键联接
轴径D1=30mm,L=70mm
查手册得,选用A型平键,得:
键A 8×7 GB1096-79 l=L-b=70-8=62mm
T1=73.10N•m h=7mm
根据课本P243(10-5)式得
σp=4T1/ D1hl=4×73100/30×7×62
=22.46Mpa<[σR]=110Mpa

2.输出轴与齿轮联接采用平键联接
轴径D5=56mm L=68mm T2=237.7N•m
查手册P51 选A型平键
键10×8 GB1096-79
l=L5-b=56-10=46mm h=8mm
σp=4T2/ D5hl=4×237700/56×8×46
=46.14Mpa<[σp]=110Mpa

3.输出轴与联轴器联接用平键联接
轴径D1=38mm L=82mm T2=237.7Nm
查手册选用A型平键
键8×7 GB1096-79
l=L1-b=70-8=62mm h=7mm
据课本P243式(10-5)得
σp=4T2/ D1hl=4×237700/38×7×62
=57.65<[σp] =110Mpa

九.联轴器的选择
查表16-2,得:电动机伸出轴直径为 48mm
输入轴端联轴器选用弹性柱销联轴器HL4(JC38×82/JA48×112)

十. 润滑和密封方式的选择
1.因为大齿轮线速度v2=3.15m/s>2m/s ,故采用稀油润滑

2.采取毡圈油封(毡圈的选择见装配图)

十一. 箱体及附件的结构设计和选择
1.箱体结构尺寸结果:
壁厚 δ=8mm
箱盖,箱座, 箱底座凸缘的厚度:b=12mm b1=12mm b2=20mm
连接凸缘宽:δ+c1+c2=40mm
箱座下凸缘宽:c1+c2=48mm
轴承座宽:δ+c1+c2+(5~8)=40
地脚螺栓:直径:M15
沉孔直径: D=45
扳手空间: c1,c2
轴承旁螺栓:直径:螺栓GB/T 5782 M12×120
沉孔直径: D=13.5
扳手空间: c1=20 , c2=16
箱体连接螺栓:直径:螺栓GB /T 5782 M10x40
沉孔直径: D=11
扳手空间: c1=18 , c2=14
轴承盖连接螺栓:直径:螺栓GB/GQ 0126-1980 M8x30
沉孔直径: D=9
扳手空间: c1=15 , c2=12

2.减速器附件设计的选择(见装配图)

十二. 参考文献
[1] 钟毅芳,吴昌林,唐增宝主编.机械设计,第二版. 武汉:华中科技大学
出版社2003
[2] 唐增宝,常建娥主编.机械设计课程设计,第三版. 武汉:华中科技大学
出版社2006

我几年前写的,没仔细改过,有什么问题给我留言

D. v带的传动比一般是多少

v带传动传动比≤6。

普通V带是一种横断面为梯形的环形传动带,它适用于小中心距与大传动比的动力传递,广泛应用于纺织机械、机床以及一般的动力传动。

V带的速度:普通≤30(m/s),窄带≤40(m/s);功率<400kW,一般≤40kW;传动比≤6。

复合V带速度:≤40(m/s);功率<150kW;传动比≤8。

V带传动是靠V带的两侧面与轮槽侧面压紧产生摩擦力进行动力传递的。与平带传动比较,V带传动的摩擦力大,因此可以传递较大功率。V带较平带结构紧凑,而且V带是无接头的传动带,所以传动较平稳,是带传动中应用最广的一种传动。

(4)带轮课程设计扩展阅读:

由于尺寸制的不同,带的长度分别以基准长度和有效长度来表示。基准长度是在规定的张紧力下,V带位于测量带轮基准直径处的周长;有效长度则是在规定张紧力下,位于测量带轮有效直径处的周长。

普通V带是用基准宽度制,窄V带则由于尺寸制的不同,有两种尺寸系列。在设计计算时,基本原理和计算公式是相同的。尺寸则有差别。

传动的优点是:带是弹性体,能缓和载荷冲击,运行平稳无噪声。过载时将引起带在带轮上打滑,因而可起到保护整机的作用。制造和安装精度不像啮合传动那样严格,维护方便,无需润滑。可通过增加带的长度以适应中心距较大的工作条件。

E. 机械零件课程设计设计用于带式运输机传动系统的齿轮(蜗轮)减速器

可以参照哈工大出版的《机械设计课程设计指导书》上面有详细的步骤。在这里我简单的给你说一下。说明书要写20多页,怎么能在这说清楚,我只能给你屡一下思路。
1.根据带拉力,带速度,滚筒直径可以算出输入功率,然后根据功率选电机。
2.然后根据确定带的传动比和齿轮传动比。
3.根据电机的功率算出各级功率和各级扭矩。
4..然后用校核公式算出两个齿轮的最小分度圆直径。
5.然后确定各齿轮的所以参数.
6.计算轴最小轴颈。
7 设计V带,这些都要查《机械设计手册》
8 轴承和联轴器的选用,根据轴颈查手册,都有标准。
9 参考材料力学校核轴承和轴以及键,画出弯矩图和扭矩图。
10 细节设计(略)
希望对你有一点帮助,如有问题我们在探讨,加油,呵呵。

F. 跪求,,机械设计课程设计带式输送机蜗轮蜗杆减速器

目录
一、设计任务书…………………………………………………………………3
1、带式运输机工作原理………………………………………………………3
2、已知条件……………………………………………………………………3
3、设计数据……………………………………………………………………3
4、传动方案……………………………………………………………………3
5、设计内容……………………………………………………………………3
二、总体传动方案的选择与分析……………………………………………4
1、传动方案的选择……………………………………………………………4
2、传动方案的分析……………………………………………………………4
三、原动机的选择………………………………………………………………4
1、原动机功率的确定…………………………………………………………4
2、原动机转速的确定…………………………………………………………5
3、原动机的选择………………………………………………………………5
四、传动装置运动及动力参数计算…………………………………………5
1、各轴转速的计算……………………………………………………………5
2、各轴功率的计算……………………………………………………………5
3、各轴转矩的计算……………………………………………………………6
五、蜗杆的设计计算……………………………………………………………6
六、低速轴的设计计算及校核………………………………………………7
七、联轴器的选取择……………………………………………………………11
1、高速级联轴器的选择………………………………………………………11
2、低速级联轴器的选择………………………………………………………11
八、低速级滚动轴承和键的校核……………………………………………12
九、润滑方式的选择……………………………………………………………13
十、心得体会……………………………………………………………………13

G. 二级圆柱齿轮减速器课程设计,我和同学运输带牵引力,鼓轮圆周速度,鼓轮直径不同,图有什么不同

减速器,我明白如何安排

你具体怎么说
我帮你解决

H. 机械设计课程设计-压片机

1、题目:15吨压片机设计
2、功能要求及工作原理

总功能要求:将干粉料压制成圆形片坯

工作原理
15吨压片机系统的工作原理及工艺动作分解如图5.1所示。移动粉筛3至模具1的型腔上方等待装料,并将上一循环已成型的工件2推出(卸料);然后粉筛振动,将粉料筛入型腔;下冲头5下沉一定深度,以防止上冲头4向下压制时将粉料扑出;然后上冲头向下,下冲头向上加压,并在一定时间内保持一定的压力;而后上冲头快速退出,下冲头随着将成型工件推出型腔。
3、原始数据和设计要求

被压工件的外形是直径34mm,厚度5mm的圆形片坯。

冲头压力为15吨(150000n)。

生产率为每分钟25片。

机器运转不均匀系数为10%。

驱动电机的功率为2.2kw,940r/min。

各执行构件的运动参数为:
上冲头行程为90~100mm;
下冲头5先下沉3mm,然后上升8mm后停歇(保压),
继而上升16mm后停歇,等粉筛将片坯推离冲头后下移21mm;
粉筛3在模具1的上方往复振动筛料,然后向左退回,待坯料成形并被推出型腔后,粉筛复在台面上右移约45~50mm推卸成形片坯。
4、要求完成的设计工作量
1)
根据功能要求,确定工作原理和绘制系统功能图。
2)
按工艺动作过程拟定运动循环图。
3)
构思系统运动方案(至少3个以上),进行方案评价,选出较优方案。
4)
对传动机构和执行机构进行运动尺寸设计。
5)
用adams或solidworks软件对机构进行运动仿真
6)
用adams或solidworks软件对机构进行运动学分析,并画出输出机构的位移、速度、和加速度线图。
7)
在2号图纸上画出绘制系统机械运动方案简图。

I. 带式输送机带传动—单级圆柱齿轮减速器.机械课程设计,10年,误差0.05,滚筒效率0.96.D=400,F=3KN,V=1.5M/

仅供参考

一、传动方案拟定
第二组第三个数据:设计带式输送机传动装置中的一级圆柱齿轮减速器
(1) 工作条件:使用年限10年,每年按300天计算,两班制工作,载荷平稳。
(2) 原始数据:滚筒圆周力F=1.7KN;带速V=1.4m/s;
滚筒直径D=220mm。
运动简图
二、电动机的选择
1、电动机类型和结构型式的选择:按已知的工作要求和 条件,选用 Y系列三相异步电动机。
2、确定电动机的功率:
(1)传动装置的总效率:
η总=η带×η2轴承×η齿轮×η联轴器×η滚筒
=0.96×0.992×0.97×0.99×0.95
=0.86
(2)电机所需的工作功率:
Pd=FV/1000η总
=1700×1.4/1000×0.86
=2.76KW
3、确定电动机转速:
滚筒轴的工作转速:
Nw=60×1000V/πD
=60×1000×1.4/π×220
=121.5r/min

根据【2】表2.2中推荐的合理传动比范围,取V带传动比Iv=2~4,单级圆柱齿轮传动比范围Ic=3~5,则合理总传动比i的范围为i=6~20,故电动机转速的可选范围为nd=i×nw=(6~20)×121.5=729~2430r/min
符合这一范围的同步转速有960 r/min和1420r/min。由【2】表8.1查出有三种适用的电动机型号、如下表
方案 电动机型号 额定功率 电动机转速(r/min) 传动装置的传动比
KW 同转 满转 总传动比 带 齿轮
1 Y132s-6 3 1000 960 7.9 3 2.63
2 Y100l2-4 3 1500 1420 11.68 3 3.89

综合考虑电动机和传动装置尺寸、重量、价格和带传动、减速器的传动比,比较两种方案可知:方案1因电动机转速低,传动装置尺寸较大,价格较高。方案2适中。故选择电动机型号Y100l2-4。
4、确定电动机型号
根据以上选用的电动机类型,所需的额定功率及同步转速,选定电动机型号为
Y100l2-4。
其主要性能:额定功率:3KW,满载转速1420r/min,额定转矩2.2。
三、计算总传动比及分配各级的传动比
1、总传动比:i总=n电动/n筒=1420/121.5=11.68
2、分配各级传动比
(1) 取i带=3
(2) ∵i总=i齿×i 带π
∴i齿=i总/i带=11.68/3=3.89
四、运动参数及动力参数计算
1、计算各轴转速(r/min)
nI=nm/i带=1420/3=473.33(r/min)
nII=nI/i齿=473.33/3.89=121.67(r/min)
滚筒nw=nII=473.33/3.89=121.67(r/min)
2、 计算各轴的功率(KW)
PI=Pd×η带=2.76×0.96=2.64KW
PII=PI×η轴承×η齿轮=2.64×0.99×0.97=2.53KW

3、 计算各轴转矩
Td=9.55Pd/nm=9550×2.76/1420=18.56N?m
TI=9.55p2入/n1 =9550x2.64/473.33=53.26N?m

TII =9.55p2入/n2=9550x2.53/121.67=198.58N?m

五、传动零件的设计计算
1、 皮带轮传动的设计计算
(1) 选择普通V带截型
由课本[1]P189表10-8得:kA=1.2 P=2.76KW
PC=KAP=1.2×2.76=3.3KW
据PC=3.3KW和n1=473.33r/min
由课本[1]P189图10-12得:选用A型V带
(2) 确定带轮基准直径,并验算带速
由[1]课本P190表10-9,取dd1=95mm>dmin=75
dd2=i带dd1(1-ε)=3×95×(1-0.02)=279.30 mm
由课本[1]P190表10-9,取dd2=280
带速V:V=πdd1n1/60×1000
=π×95×1420/60×1000
=7.06m/s
在5~25m/s范围内,带速合适。
(3) 确定带长和中心距
初定中心距a0=500mm
Ld=2a0+π(dd1+dd2)/2+(dd2-dd1)2/4a0
=2×500+3.14(95+280)+(280-95)2/4×450
=1605.8mm
根据课本[1]表(10-6)选取相近的Ld=1600mm
确定中心距a≈a0+(Ld-Ld0)/2=500+(1600-1605.8)/2
=497mm
(4) 验算小带轮包角
α1=1800-57.30 ×(dd2-dd1)/a
=1800-57.30×(280-95)/497
=158.670>1200(适用)
(5) 确定带的根数
单根V带传递的额定功率.据dd1和n1,查课本图10-9得 P1=1.4KW
i≠1时单根V带的额定功率增量.据带型及i查[1]表10-2得 △P1=0.17KW
查[1]表10-3,得Kα=0.94;查[1]表10-4得 KL=0.99
Z= PC/[(P1+△P1)KαKL]
=3.3/[(1.4+0.17) ×0.94×0.99]
=2.26 (取3根)
(6) 计算轴上压力
由课本[1]表10-5查得q=0.1kg/m,由课本式(10-20)单根V带的初拉力:
F0=500PC/ZV[(2.5/Kα)-1]+qV2=500x3.3/[3x7.06(2.5/0.94-1)]+0.10x7.062 =134.3kN
则作用在轴承的压力FQ
FQ=2ZF0sin(α1/2)=2×3×134.3sin(158.67o/2)
=791.9N

2、齿轮传动的设计计算
(1)选择齿轮材料与热处理:所设计齿轮传动属于闭式传动,通常
齿轮采用软齿面。查阅表[1] 表6-8,选用价格便宜便于制造的材料,小齿轮材料为45钢,调质,齿面硬度260HBS;大齿轮材料也为45钢,正火处理,硬度为215HBS;
精度等级:运输机是一般机器,速度不高,故选8级精度。
(2)按齿面接触疲劳强度设计
由d1≥ (6712×kT1(u+1)/φ[σH]2)1/3
确定有关参数如下:传动比i齿=3.89
取小齿轮齿数Z1=20。则大齿轮齿数:Z2=iZ1= ×20=77.8取z2=78
由课本表6-12取φd=1.1
(3)转矩T1
T1=9.55×106×P1/n1=9.55×106×2.61/473.33=52660N?mm
(4)载荷系数k : 取k=1.2
(5)许用接触应力[σH]
[σH]= σHlim ZN/SHmin 由课本[1]图6-37查得:
σHlim1=610Mpa σHlim2=500Mpa
接触疲劳寿命系数Zn:按一年300个工作日,每天16h计算,由公式N=60njtn 计算
N1=60×473.33×10×300×18=1.36x109
N2=N/i=1.36x109 /3.89=3.4×108
查[1]课本图6-38中曲线1,得 ZN1=1 ZN2=1.05
按一般可靠度要求选取安全系数SHmin=1.0
[σH]1=σHlim1ZN1/SHmin=610x1/1=610 Mpa
[σH]2=σHlim2ZN2/SHmin=500x1.05/1=525Mpa
故得:
d1≥ (6712×kT1(u+1)/φ[σH]2)1/3
=49.04mm
模数:m=d1/Z1=49.04/20=2.45mm
取课本[1]P79标准模数第一数列上的值,m=2.5
(6)校核齿根弯曲疲劳强度
σ bb=2KT1YFS/bmd1
确定有关参数和系数
分度圆直径:d1=mZ1=2.5×20mm=50mm
d2=mZ2=2.5×78mm=195mm
齿宽:b=φdd1=1.1×50mm=55mm
取b2=55mm b1=60mm
(7)复合齿形因数YFs 由课本[1]图6-40得:YFS1=4.35,YFS2=3.95
(8)许用弯曲应力[σbb]
根据课本[1]P116:
[σbb]= σbblim YN/SFmin
由课本[1]图6-41得弯曲疲劳极限σbblim应为: σbblim1=490Mpa σbblim2 =410Mpa
由课本[1]图6-42得弯曲疲劳寿命系数YN:YN1=1 YN2=1
弯曲疲劳的最小安全系数SFmin :按一般可靠性要求,取SFmin =1
计算得弯曲疲劳许用应力为
[σbb1]=σbblim1 YN1/SFmin=490×1/1=490Mpa
[σbb2]= σbblim2 YN2/SFmin =410×1/1=410Mpa
校核计算
σbb1=2kT1YFS1/ b1md1=71.86pa< [σbb1]
σbb2=2kT1YFS2/ b2md1=72.61Mpa< [σbb2]
故轮齿齿根弯曲疲劳强度足够
(9)计算齿轮传动的中心矩a
a=(d1+d2)/2= (50+195)/2=122.5mm
(10)计算齿轮的圆周速度V
计算圆周速度V=πn1d1/60×1000=3.14×473.33×50/60×1000=1.23m/s
因为V<6m/s,故取8级精度合适.

六、轴的设计计算
从动轴设计
1、选择轴的材料 确定许用应力
选轴的材料为45号钢,调质处理。查[2]表13-1可知:
σb=650Mpa,σs=360Mpa,查[2]表13-6可知:[σb+1]bb=215Mpa
[σ0]bb=102Mpa,[σ-1]bb=60Mpa
2、按扭转强度估算轴的最小直径
单级齿轮减速器的低速轴为转轴,输出端与联轴器相接,
从结构要求考虑,输出端轴径应最小,最小直径为:
d≥C
查[2]表13-5可得,45钢取C=118
则d≥118×(2.53/121.67)1/3mm=32.44mm
考虑键槽的影响以及联轴器孔径系列标准,取d=35mm
3、齿轮上作用力的计算
齿轮所受的转矩:T=9.55×106P/n=9.55×106×2.53/121.67=198582 N
齿轮作用力:
圆周力:Ft=2T/d=2×198582/195N=2036N
径向力:Fr=Fttan200=2036×tan200=741N
4、轴的结构设计
轴结构设计时,需要考虑轴系中相配零件的尺寸以及轴上零件的固定方式,按比例绘制轴系结构草图。
(1)、联轴器的选择
可采用弹性柱销联轴器,查[2]表9.4可得联轴器的型号为HL3联轴器:35×82 GB5014-85
(2)、确定轴上零件的位置与固定方式
单级减速器中,可以将齿轮安排在箱体中央,轴承对称布置
在齿轮两边。轴外伸端安装联轴器,齿轮靠油环和套筒实现
轴向定位和固定,靠平键和过盈配合实现周向固定,两端轴
承靠套筒实现轴向定位,靠过盈配合实现周向固定 ,轴通
过两端轴承盖实现轴向定位,联轴器靠轴肩平键和过盈配合
分别实现轴向定位和周向定位
(3)、确定各段轴的直径
将估算轴d=35mm作为外伸端直径d1与联轴器相配(如图),
考虑联轴器用轴肩实现轴向定位,取第二段直径为d2=40mm
齿轮和左端轴承从左侧装入,考虑装拆方便以及零件固定的要求,装轴处d3应大于d2,取d3=4 5mm,为便于齿轮装拆与齿轮配合处轴径d4应大于d3,取d4=50mm。齿轮左端用用套筒固定,右端用轴环定位,轴环直径d5
满足齿轮定位的同时,还应满足右侧轴承的安装要求,根据选定轴承型号确定.右端轴承型号与左端轴承相同,取d6=45mm.
(4)选择轴承型号.由[1]P270初选深沟球轴承,代号为6209,查手册可得:轴承宽度B=19,安装尺寸D=52,故轴环直径d5=52mm.
(5)确定轴各段直径和长度
Ⅰ段:d1=35mm 长度取L1=50mm

II段:d2=40mm
初选用6209深沟球轴承,其内径为45mm,
宽度为19mm.考虑齿轮端面和箱体内壁,轴承端面和箱体内壁应有一定距离。取套筒长为20mm,通过密封盖轴段长应根据密封盖的宽度,并考虑联轴器和箱体外壁应有一定矩离而定,为此,取该段长为55mm,安装齿轮段长度应比轮毂宽度小2mm,故II段长:
L2=(2+20+19+55)=96mm
III段直径d3=45mm
L3=L1-L=50-2=48mm
Ⅳ段直径d4=50mm
长度与右面的套筒相同,即L4=20mm
Ⅴ段直径d5=52mm. 长度L5=19mm
由上述轴各段长度可算得轴支承跨距L=96mm
(6)按弯矩复合强度计算
①求分度圆直径:已知d1=195mm
②求转矩:已知T2=198.58N?m
③求圆周力:Ft
根据课本P127(6-34)式得
Ft=2T2/d2=2×198.58/195=2.03N
④求径向力Fr
根据课本P127(6-35)式得
Fr=Ft?tanα=2.03×tan200=0.741N
⑤因为该轴两轴承对称,所以:LA=LB=48mm

(1)绘制轴受力简图(如图a)
(2)绘制垂直面弯矩图(如图b)
轴承支反力:
FAY=FBY=Fr/2=0.74/2=0.37N
FAZ=FBZ=Ft/2=2.03/2=1.01N
由两边对称,知截面C的弯矩也对称。截面C在垂直面弯矩为
MC1=FAyL/2=0.37×96÷2=17.76N?m
截面C在水平面上弯矩为:
MC2=FAZL/2=1.01×96÷2=48.48N?m
(4)绘制合弯矩图(如图d)
MC=(MC12+MC22)1/2=(17.762+48.482)1/2=51.63N?m
(5)绘制扭矩图(如图e)
转矩:T=9.55×(P2/n2)×106=198.58N?m
(6)绘制当量弯矩图(如图f)
转矩产生的扭剪文治武功力按脉动循环变化,取α=0.2,截面C处的当量弯矩:
Mec=[MC2+(αT)2]1/2
=[51.632+(0.2×198.58)2]1/2=65.13N?m
(7)校核危险截面C的强度
由式(6-3)

σe=65.13/0.1d33=65.13x1000/0.1×453
=7.14MPa< [σ-1]b=60MPa
∴该轴强度足够。

主动轴的设计
1、选择轴的材料 确定许用应力
选轴的材料为45号钢,调质处理。查[2]表13-1可知:
σb=650Mpa,σs=360Mpa,查[2]表13-6可知:[σb+1]bb=215Mpa
[σ0]bb=102Mpa,[σ-1]bb=60Mpa
2、按扭转强度估算轴的最小直径
单级齿轮减速器的低速轴为转轴,输出端与联轴器相接,
从结构要求考虑,输出端轴径应最小,最小直径为:
d≥C
查[2]表13-5可得,45钢取C=118
则d≥118×(2.64/473.33)1/3mm=20.92mm
考虑键槽的影响以系列标准,取d=22mm
3、齿轮上作用力的计算
齿轮所受的转矩:T=9.55×106P/n=9.55×106×2.64/473.33=53265 N
齿轮作用力:
圆周力:Ft=2T/d=2×53265/50N=2130N
径向力:Fr=Fttan200=2130×tan200=775N
确定轴上零件的位置与固定方式
单级减速器中,可以将齿轮安排在箱体中央,轴承对称布置
在齿轮两边。齿轮靠油环和套筒实现 轴向定位和固定
,靠平键和过盈配合实现周向固定,两端轴
承靠套筒实现轴向定位,靠过盈配合实现周向固定 ,轴通
过两端轴承盖实现轴向定位,
4 确定轴的各段直径和长度
初选用6206深沟球轴承,其内径为30mm,
宽度为16mm.。考虑齿轮端面和箱体内壁,轴承端面与箱体内壁应有一定矩离,则取套筒长为20mm,则该段长36mm,安装齿轮段长度为轮毂宽度为2mm。
(2)按弯扭复合强度计算
①求分度圆直径:已知d2=50mm
②求转矩:已知T=53.26N?m
③求圆周力Ft:根据课本P127(6-34)式得
Ft=2T3/d2=2×53.26/50=2.13N
④求径向力Fr根据课本P127(6-35)式得
Fr=Ft?tanα=2.13×0.36379=0.76N
⑤∵两轴承对称
∴LA=LB=50mm
(1)求支反力FAX、FBY、FAZ、FBZ
FAX=FBY=Fr/2=0.76/2=0.38N
FAZ=FBZ=Ft/2=2.13/2=1.065N
(2) 截面C在垂直面弯矩为
MC1=FAxL/2=0.38×100/2=19N?m
(3)截面C在水平面弯矩为
MC2=FAZL/2=1.065×100/2=52.5N?m
(4)计算合成弯矩
MC=(MC12+MC22)1/2
=(192+52.52)1/2
=55.83N?m
(5)计算当量弯矩:根据课本P235得α=0.4
Mec=[MC2+(αT)2]1/2=[55.832+(0.4×53.26)2]1/2
=59.74N?m
(6)校核危险截面C的强度
由式(10-3)
σe=Mec/(0.1d3)=59.74x1000/(0.1×303)
=22.12Mpa<[σ-1]b=60Mpa
∴此轴强度足够

(7) 滚动轴承的选择及校核计算
一从动轴上的轴承
根据根据条件,轴承预计寿命
L'h=10×300×16=48000h
(1)由初选的轴承的型号为: 6209,
查[1]表14-19可知:d=55mm,外径D=85mm,宽度B=19mm,基本额定动载荷C=31.5KN, 基本静载荷CO=20.5KN,
查[2]表10.1可知极限转速9000r/min

(1)已知nII=121.67(r/min)

两轴承径向反力:FR1=FR2=1083N
根据课本P265(11-12)得轴承内部轴向力
FS=0.63FR 则FS1=FS2=0.63FR1=0.63x1083=682N
(2) ∵FS1+Fa=FS2 Fa=0
故任意取一端为压紧端,现取1端为压紧端
FA1=FS1=682N FA2=FS2=682N
(3)求系数x、y
FA1/FR1=682N/1038N =0.63
FA2/FR2=682N/1038N =0.63
根据课本P265表(14-14)得e=0.68
FA1/FR1<e x1=1 FA2/FR2<e x2=1
y1=0 y2=0
(4)计算当量载荷P1、P2
根据课本P264表(14-12)取f P=1.5
根据课本P264(14-7)式得
P1=fP(x1FR1+y1FA1)=1.5×(1×1083+0)=1624N
P2=fp(x2FR1+y2FA2)= 1.5×(1×1083+0)=1624N
(5)轴承寿命计算
∵P1=P2 故取P=1624N
∵深沟球轴承ε=3
根据手册得6209型的Cr=31500N
由课本P264(14-5)式得
LH=106(ftCr/P)ε/60n
=106(1×31500/1624)3/60X121.67=998953h>48000h
∴预期寿命足够

二.主动轴上的轴承:
(1)由初选的轴承的型号为:6206
查[1]表14-19可知:d=30mm,外径D=62mm,宽度B=16mm,
基本额定动载荷C=19.5KN,基本静载荷CO=111.5KN,
查[2]表10.1可知极限转速13000r/min
根据根据条件,轴承预计寿命
L'h=10×300×16=48000h
(1)已知nI=473.33(r/min)
两轴承径向反力:FR1=FR2=1129N
根据课本P265(11-12)得轴承内部轴向力
FS=0.63FR 则FS1=FS2=0.63FR1=0.63x1129=711.8N
(2) ∵FS1+Fa=FS2 Fa=0
故任意取一端为压紧端,现取1端为压紧端
FA1=FS1=711.8N FA2=FS2=711.8N
(3)求系数x、y
FA1/FR1=711.8N/711.8N =0.63
FA2/FR2=711.8N/711.8N =0.63
根据课本P265表(14-14)得e=0.68
FA1/FR1<e x1=1 FA2/FR2<e x2=1
y1=0 y2=0
(4)计算当量载荷P1、P2
根据课本P264表(14-12)取f P=1.5
根据课本P264(14-7)式得
P1=fP(x1FR1+y1FA1)=1.5×(1×1129+0)=1693.5N
P2=fp(x2FR1+y2FA2)=1.5×(1×1129+0)= 1693.5N
(5)轴承寿命计算
∵P1=P2 故取P=1693.5N
∵深沟球轴承ε=3
根据手册得6206型的Cr=19500N
由课本P264(14-5)式得
LH=106(ftCr/P)ε/60n
=106(1×19500/1693.5)3/60X473.33=53713h>48000h
∴预期寿命足够

七、键联接的选择及校核计算
1.根据轴径的尺寸,由[1]中表12-6
高速轴(主动轴)与V带轮联接的键为:键8×36 GB1096-79
大齿轮与轴连接的键为:键 14×45 GB1096-79
轴与联轴器的键为:键10×40 GB1096-79
2.键的强度校核
大齿轮与轴上的键 :键14×45 GB1096-79
b×h=14×9,L=45,则Ls=L-b=31mm
圆周力:Fr=2TII/d=2×198580/50=7943.2N
挤压强度: =56.93<125~150MPa=[σp]
因此挤压强度足够
剪切强度: =36.60<120MPa=[ ]
因此剪切强度足够
键8×36 GB1096-79和键10×40 GB1096-79根据上面的步骤校核,并且符合要求。

八、减速器箱体、箱盖及附件的设计计算~
1、减速器附件的选择
通气器
由于在室内使用,选通气器(一次过滤),采用M18×1.5
油面指示器
选用游标尺M12
起吊装置
采用箱盖吊耳、箱座吊耳.

放油螺塞
选用外六角油塞及垫片M18×1.5
根据《机械设计基础课程设计》表5.3选择适当型号:
起盖螺钉型号:GB/T5780 M18×30,材料Q235
高速轴轴承盖上的螺钉:GB5783~86 M8X12,材料Q235
低速轴轴承盖上的螺钉:GB5783~86 M8×20,材料Q235
螺栓:GB5782~86 M14×100,材料Q235
箱体的主要尺寸:

(1)箱座壁厚z=0.025a+1=0.025×122.5+1= 4.0625 取z=8
(2)箱盖壁厚z1=0.02a+1=0.02×122.5+1= 3.45
取z1=8
(3)箱盖凸缘厚度b1=1.5z1=1.5×8=12
(4)箱座凸缘厚度b=1.5z=1.5×8=12
(5)箱座底凸缘厚度b2=2.5z=2.5×8=20

(6)地脚螺钉直径df =0.036a+12=
0.036×122.5+12=16.41(取18)
(7)地脚螺钉数目n=4 (因为a<250)
(8)轴承旁连接螺栓直径d1= 0.75df =0.75×18= 13.5 (取14)
(9)盖与座连接螺栓直径 d2=(0.5-0.6)df =0.55× 18=9.9 (取10)
(10)连接螺栓d2的间距L=150-200
(11)轴承端盖螺钉直d3=(0.4-0.5)df=0.4×18=7.2(取8)
(12)检查孔盖螺钉d4=(0.3-0.4)df=0.3×18=5.4 (取6)
(13)定位销直径d=(0.7-0.8)d2=0.8×10=8
(14)df.d1.d2至外箱壁距离C1
(15) Df.d2

(16)凸台高度:根据低速级轴承座外径确定,以便于扳手操作为准。
(17)外箱壁至轴承座端面的距离C1+C2+(5~10)
(18)齿轮顶圆与内箱壁间的距离:>9.6 mm
(19)齿轮端面与内箱壁间的距离:=12 mm
(20)箱盖,箱座肋厚:m1=8 mm,m2=8 mm
(21)轴承端盖外径∶D+(5~5.5)d3

D~轴承外径
(22)轴承旁连接螺栓距离:尽可能靠近,以Md1和Md3 互不干涉为准,一般取S=D2.

九、润滑与密封
1.齿轮的润滑
采用浸油润滑,由于为单级圆柱齿轮减速器,速度ν<12m/s,当m<20 时,浸油深度h约为1个齿高,但不小于10mm,所以浸油高度约为36mm。
2.滚动轴承的润滑
由于轴承周向速度为,所以宜开设油沟、飞溅润滑。
3.润滑油的选择
齿轮与轴承用同种润滑油较为便利,考虑到该装置用于小型设备,选用GB443-89全损耗系统用油L-AN15润滑油。
4.密封方法的选取
选用凸缘式端盖易于调整,采用闷盖安装骨架式旋转轴唇型密封圈实现密封。密封圈型号按所装配轴的直径确定为GB894.1-86-25轴承盖结构尺寸按用其定位的轴承的外径决定。

十、设计小结
课程设计体会
课程设计都需要刻苦耐劳,努力钻研的精神。对于每一个事物都会有第一次的吧,而没一个第一次似乎都必须经历由感觉困难重重,挫折不断到一步一步克服,可能需要连续几个小时、十几个小时不停的工作进行攻关;最后出成果的瞬间是喜悦、是轻松、是舒了口气!
课程设计过程中出现的问题几乎都是过去所学的知识不牢固,许多计算方法、公式都忘光了,要不断的翻资料、看书,和同学们相互探讨。虽然过程很辛苦,有时还会有放弃的念头,但始终坚持下来,完成了设计,而且学到了,应该是补回了许多以前没学好的知识,同时巩固了这些知识,提高了运用所学知识的能力。

十一、参考资料目录
[1]《机械设计基础课程设计》,高等教育出版社,陈立德主编,2004年7月第2版;
[2] 《机械设计基础》,机械工业出版社 胡家秀主编 2007年7月第1版

J. 机械设计课程设计用于带式运输机上的展开式两级圆柱斜齿齿轮轮减速器

发去二级圆柱齿轮减速器设计说明书及CAD图,请查收。仅供参考。

热点内容
美发店认证 发布:2021-03-16 21:43:38 浏览:443
物业纠纷原因 发布:2021-03-16 21:42:46 浏览:474
全国著名不孕不育医院 发布:2021-03-16 21:42:24 浏览:679
知名明星确诊 发布:2021-03-16 21:42:04 浏览:14
ipad大专有用吗 发布:2021-03-16 21:40:58 浏览:670
公务员协议班值得吗 发布:2021-03-16 21:40:00 浏览:21
知名书店品牌 发布:2021-03-16 21:39:09 浏览:949
q雷授权码在哪里买 发布:2021-03-16 21:38:44 浏览:852
图书天猫转让 发布:2021-03-16 21:38:26 浏览:707
宝宝水杯品牌 发布:2021-03-16 21:35:56 浏览:837