加密认证
❶ 加密技术的证书
证书实际是由证书签证机关(CA)签发的对用户的公钥的认证。
证书的内容包括:电子签证机关的信息、公钥用户信息、公钥、权威机构的签字和有效期等等。目前,证书的格式和验证方法普遍遵循X.509 国际标准。
加密:
我们将文字转换成不能直接阅读的形式(即密文)的过程称为加密。
解密:
我们将密文转换成能够直接阅读的文字(即明文)的过程称为解密。
如何在电子文档上实现签名的目的呢?我们可以使用数字签名。RSA公钥体制可实现对数字信息的数字签名,方法如下:
信息发送者用其私钥对从所传报文中提取出的特征数据(或称数字指纹)进行RSA算法操作,以保证发信人无法抵赖曾发过该信息(即不可抵赖性),同时也确保信息报文在传递过程中未被篡改(即完整性)。当信息接收者收到报文后,就可以用发送者的公钥对数字签名进行验证。
在数字签名中有重要作用的数字指纹是通过一类特殊的散列函数(HASH函数) 生成的。对这些HASH函数的特殊要求是:
1.接受的输入报文数据没有长度限制;
2.对任何输入报文数据生成固定长度的摘要(数字指纹)输出;
3.从报文能方便地算出摘要;
4.难以对指定的摘要生成一个报文,而由该报文可以算出该指定的摘要;
5.难以生成两个不同的报文具有相同的摘要。
验证:
收方在收到信息后用如下的步骤验证您的签名:
1.使用自己的私钥将信息转为明文;
2.使用发信方的公钥从数字签名部分得到原摘要;
3.收方对您所发送的源信息进行hash运算,也产生一个摘要;
4.收方比较两个摘要,如果两者相同,则可以证明信息签名者的身份。
如果两摘要内容不符,会说明什么原因呢?
可能对摘要进行签名所用的私钥不是签名者的私钥,这就表明信息的签名者不可信;也可能收到的信息根本就不是签名者发送的信息,信息在传输过程中已经遭到破坏或篡改。
❷ 如何利用加密技术进行身份认证
引言
随着互联网的不断发展,越来越多的人们开始尝试在线交易。然而病毒、黑客、网络钓鱼以及网页仿冒诈骗等恶意威胁,给在线交易的安全性带来了极大的挑战。据调查机构调查显示,去年美国由于网络诈骗事件,使得银行和消费者遭受的直接损失总计达24亿美元,平均每位受害者付出了约1200美元的代价。另据香港明报消息,香港去年由于网络诈骗导致的直接损失达140万港元。
层出不穷的网络犯罪,引起了人们对网络身份的信任危机,如何证明“我是谁?”及如何防止身份冒用等问题又一次成为人们关注的焦点。
主要的身份认证技术分析
目前,计算机及网络系统中常用的身份认证方式主要有以下几种:
用户名/密码方式
用户名/密码是最简单也是最常用的身份认证方法,是基于“what you know”的验证手段。每个用户的密码是由用户自己设定的,只有用户自己才知道。只要能够正确输入密码,计算机就认为操作者就是合法用户。实际上,由于许多用户为了防止忘记密码,经常采用诸如生日、电话号码等容易被猜测的字符串作为密码,或者把密码抄在纸上放在一个自认为安全的地方,这样很容易造成密码泄漏。即使能保证用户密码不被泄漏,由于密码是静态的数据,在验证过程中需要在计算机内存中和网络中传输,而每次验证使用的验证信息都是相同的,很容易被驻留在计算机内存中的木马程序或网络中的监听设备截获。因此,从安全性上讲,用户名/密码方式一种是极不安全的身份认证方式。
智能卡认证
智能卡是一种内置集成电路的芯片,芯片中存有与用户身份相关的数据, 智能卡由专门的厂商通过专门的设备生产,是不可复制的硬件。智能卡由合法用户随身携带,登录时必须将智能卡插入专用的读卡器读取其中的信息,以验证用户的身份。智能卡认证是基于“what you have”的手段,通过智能卡硬件不可复制来保证用户身份不会被仿冒。然而由于每次从智能卡中读取的数据是静态的,通过内存扫描或网络监听等技术还是很容易截取到用户的身份验证信息,因此还是存在安全隐患。
动态口令
动态口令技术是一种让用户密码按照时间或使用次数不断变化、每个密码只能使用一次的技术。它采用一种叫作动态令牌的专用硬件,内置电源、密码生成芯片和显示屏,密码生成芯片运行专门的密码算法,根据当前时间或使用次数生成当前密码并显示在显示屏上。认证服务器采用相同的算法计算当前的有效密码。用户使用时只需要将动态令牌上显示的当前密码输入客户端计算机,即可实现身份认证。由于每次使用的密码必须由动态令牌来产生,只有合法用户才持有该硬件,所以只要通过密码验证就可以认为该用户的身份是可靠的。而用户每次使用的密码都不相同,即使黑客截获了一次密码,也无法利用这个密码来仿冒合法用户的身份。
动态口令技术采用一次一密的方法,有效保证了用户身份的安全性。但是如果客户端与服务器端的时间或次数不能保持良好的同步,就可能发生合法用户无法登录的问题。并且用户每次登录时需要通过键盘输入一长串无规律的密码,一旦输错就要重新操作,使用起来非常不方便。
USB Key认证
基于USB Key的身份认证方式是近几年发展起来的一种方便、安全的身份认证技术。它采用软硬件相结合、一次一密的强双因子认证模式,很好地解决了安全性与易用性之间的矛盾。USB Key是一种USB接口的硬件设备,它内置单片机或智能卡芯片,可以存储用户的密钥或数字证书,利用USB Key内置的密码算法实现对用户身份的认证。基于USB Key身份认证系统主要有两种应用模式:一是基于冲击/响应的认证模式,二是基于PKI体系的认证模式。
技术的回归
传统的身份认证技术,一直游离于人类体外,有关身份验证的技术手段一直在兜圈子,而且兜得越来越大,越来越复杂。以“用户名+口令”方式过渡到智能卡方式为例,首先需要随时携带智能卡,其次容易丢失或失窃,补办手续繁琐冗长,并且仍然需要你出具能够证明身份的其它文件,使用很不方便。
直到生物识别技术得到成功的应用,这个圈子才终于又兜了回来。这种“兜回来”,意义不只在技术进步,站在“体验经济”和人文角度,它真正回归到了对人类最原始生理性的贴和,并通过这种终极贴和,回归给了人类“绝对个性化”的心理感受,与此同时,还最大限度释放了这种“绝对个性化”原本具有的,在引导人类自身安全、简约生活上的巨大能量。
生物识别技术主要是指通过可测量的身体或行为等生物特征进行身份认证的一种技术。生物特征是指唯一的可以测量或可自动识别和验证的生理特征或行为方式。生物特征分为身体特征和行为特征两类。身体特征包括:指纹、掌型、视网膜、虹膜、人体气味、脸型、手的血管和DNA等;行为特征包括:签名、语音、行走步态等。目前部分学者将视网膜识别、虹膜识别和指纹识别等归为高级生物识别技术;将掌型识别、脸型识别、语音识别和签名识别等归为次级生物识别技术;将血管纹理识别、人体气味识别、DNA识别等归为“深奥的”生物识别技术。
与传统身份认证技术相比,生物识别技术具有以下特点:
(1) 随身性:生物特征是人体固有的特征,与人体是唯一绑定的,具有随身性。
(2) 安全性:人体特征本身就是个人身份的最好证明,满足更高的安全需求。
(3) 唯一性:每个人拥有的生物特征各不相同。
(4) 稳定性:生物特征如指纹、虹膜等人体特征不会随时间等条件的变化而变化。
(5) 广泛性:每个人都具有这种特征。
(6) 方便性:生物识别技术不需记忆密码与携带使用特殊工具(如钥匙),不会遗失。
(7) 可采集性:选择的生物特征易于测量。
(8) 可接受性:使用者对所选择的个人生物特征及其应用愿意接受。
基于以上特点,生物识别技术具有传统的身份认证手段无法比拟的优点。采用生物识别技术,可不必再记忆和设置密码,使用更加方便。
展望
就目前趋势来看,将生物识别在内的几种安全机制整合应用正在成为新的潮流。其中,较为引人注目的是将生物识别、智能卡、公匙基础设施(PKI)技术相结合的应用,如指纹KEY产品。PKI从理论上,提供了一个完美的安全框架,其安全的核心是对私钥的保护;智能卡内置CPU和安全存储单元,涉及私钥的安全运算在卡内完成,可以保证私钥永远不被导出卡外,从而保证了私钥的绝对安全;生物识别技术不再需要记忆和设置密码,个体的绝对差异化使生物识别树立了有始以来的最高权威。三种技术的有机整合,正可谓是一关三卡、相得益彰,真正做到使人们在网上冲浪时,不经意间,享受便捷的安全。
❸ 什么是RSA认证
RSA公钥加密算法是1977年由罗纳德·李维斯特(Ron Rivest)、阿迪·萨莫尔(Adi Shamir)和伦纳德·阿德曼(Leonard Adleman)一起提出的。当时他们三人都在麻省理工学院工作。RSA就是他们三人姓氏开头字母拼在一起组成的。
RSA是目前最有影响力的公钥加密算法,它能够抵抗到目前为止已知的绝大多数密码攻击,已被ISO推荐为公钥数据加密标准。
RSA算法基于一个十分简单的数论事实:将两个大素数相乘十分容易,但是想要对其乘积进行因式分解却极其困难,因此可以将乘积公开作为加密密钥。
这也就是RSA双因素认证的秘密。
❹ 身份认证与加密有何区别与联系
加密和身份验证算法
由于对安全性的攻击方法多种多样,设计者很难预计到所有的攻击方法,因此设计安全性算法和协议非常困难。普遍为人接受的关于安全性方法的观点是,一个好的加密算法或身份验证算法即使被攻击者了解,该算法也是安全的。这一点对于Internet安全性尤其重要。在Internet中,使用嗅探器的攻击者通过侦听系统与其连接协商,经常能够确切了解系统使用的是哪一种算法。
与Internet安全性相关的重要的密码功能大致有5类,包括对称加密、公共密钥加密、密钥交换、安全散列和数字签名。
1. 对称加密
大多数人都熟知对称加密这一加密方法。在这种方法中,每一方都使用相同的密钥来加密或解密。只要掌握了密钥,就可以破解使用此法加密的所有数据。这种方法有时也称作秘密密钥加密。通常对称加密效率很高,它是网络传送大量数据中最常用的一类加密方法。
常用的对称加密算法包括:
• 数据加密标准( DES )。DES首先由IBM公司在7 0年代提出,已成为国际标准。它有5 6位密钥。三重DES算法对DES略作变化,它使用DES算法三次加密数据,从而改进了安全性。
• RC2 、RC4和RC5。这些密码算法提供了可变长度密钥加密方法,由一家安全性动态公司,RSA数据安全公司授权使用。目前网景公司的Navigator浏览器及其他很多Internet客户端和服务器端产品使用了这些密码。
• 其他算法。包括在加拿大开发的用于Nortel公司Entrust产品的CAST、国际数据加密算法( IDEA )、传闻由前苏联安全局开发的GOST算法、由Bruce Schneier开发并在公共域发表的Blowfish算法及由美国国家安全局开发并用于Clipper芯片的契约密钥系统的Skipjack 算法。
安全加密方法要求使用足够长的密钥。短密钥很容易为穷举攻击所破解。在穷举攻击中,攻击者使用计算机来对所有可能的密钥组合进行测试,很容易找到密钥。例如,长度为4 0位的密钥就不够安全,因为使用相对而言并不算昂贵的计算机来进行穷举攻击,在很短的时间内就可以破获密钥。同样,单DES算法已经被破解。一般而言,对于穷举攻击,在可预测的将来,1 2 8位还可能是安全的。
对于其他类型的攻击,对称加密算法也比较脆弱。大多数使用对称加密算法的应用往往使用会话密钥,即一个密钥只用于一个会话的数据传送,或在一次会话中使用几个密钥。这样,如果会话密钥丢失,则只有在此会话中传送的数据受损,不会影响到较长时期内交换的大量数据。
2. 公共密钥加密
公共密钥加密算法使用一对密钥。公共密钥与秘密密钥相关联,公共密钥是公开的。以公共密钥加密的数据只能以秘密密钥来解密,同样可以用公共密钥来解密以秘密密钥加密的数据。这样只要实体的秘密密钥不泄露,其他实体就可以确信以公共密钥加密的数据只能由相应秘密密钥的持有者来解密。尽管公共密钥加密算法的效率不高,但它和数字签名均是最常用的对网络传送的会话密钥进行加密的算法。
最常用的一类公共密钥加密算法是RSA算法,该算法由Ron Rivest 、Adi Shamir 和LenAdleman开发,由RSA数据安全公司授权使用。RSA定义了用于选择和生成公共/秘密密钥对的机制,以及目前用于加密的数学函数。
3. 密钥交换
开放信道这种通信媒体上传送的数据可能被第三者窃听。在Internet这样的开放信道上要实现秘密共享难度很大。但是很有必要实现对共享秘密的处理,因为两个实体之间需要共享用于加密的密钥。关于如何在公共信道上安全地处理共享密钥这一问题,有一些重要的加密算法,是以对除预定接受者之外的任何人都保密的方式来实现的。
Diffie-Hellman密钥交换算法允许实体间交换足够的信息以产生会话加密密钥。按照惯例,假设一个密码协议的两个参与者实体分别是Alice和Bob,Alice使用Bob的公开值和自己的秘密值来计算出一个值;Bob也计算出自己的值并发给Alice,然后双方使用自己的秘密值来计算他们的共享密钥。其中的数学计算相对比较简单,而且不属于本书讨论的范围。算法的概要是Bob和Alice能够互相发送足够的信息给对方以计算出他们的共享密钥,但是这些信息却不足以让攻击者计算出密钥。
Diffie-Hellman算法通常称为公共密钥算法,但它并不是一种公共密钥加密算法。该算法可用于计算密钥,但密钥必须和某种其他加密算法一起使用。但是,Diffie-Hellman算法可用于身份验证。Network Associates公司的P G P公共密钥软件中就使用了此算法。
密钥交换是构成任何完整的Internet安全性体系都必备的。此外,IPsec安全性体系结构还包括Internet密钥交换( I K E )及Internet安全性关联和密钥管理协议( ISAKMP )。
4. 安全散列
散列是一定量数据的数据摘要的一种排序。检查数字是简单的散列类型,而安全散列则产生较长的结果,经常是1 2 8位。对于良好的安全散列,攻击者很难颠倒设计或以其他方式毁灭。安全散列可以与密钥一起使用,也可以单独使用。其目的是提供报文的数字摘要,用来验证已经收到的数据是否与发送者所发送的相同。发送者计算散列并将其值包含在数据中,接收者对收到的数据进行散列计算,如果结果值与数据中所携带的散列值匹配,接收者就可以确认数据的完整性。
❺ 无线路由器安全设置和加密方式和认证方法还有密码类型
为保障网络安全,强烈推荐开启安全设置,并使用WPA-PSK/WPA2-PSK AES加密方法。
具体设置方法为(以TP-LINK为例):
在浏览器输入192.168.1.1登陆路由器管理页面。
在无线设置-无线安全设置页面,勾选加密方法为WPA-PSK/WPA2-PSK,认证类型为自动(密钥类型有两种WPA和WPA2,分别为64位和128位的加密类型,它们分别需要输入10个或26个字符串作为加密密码。),加密算法为AES。
PSK密码可设置为(8-63个ASCII码字符或8-64个十六进制字符)。
❻ 什么是加密认证策略
信息加密是网络安全的有效策略之一。一个加密的网络,不但可以防止非授权用户的搭线窃听和入网,而且也是对付恶意软件的有效方法之一。
信息加密的目的是保护计算机网络内的数据、文件,以及用户自身的敏感信息。网络加密常用的方法有链路加密、端到端加密和节点加密三种。链路加密的目的是保护链路两端网络设备间的通信安全;节点加密的目的是对源节点计算机到目的节点计算机之间的信息传输提供保护;端到端加密的目的是对源端用户到目的端用户的应用系统通信提供保护。用户可以根据需求酌情选择上述加密方式。
信息加密过程是通过各种加密算法实现的,目的是以尽量小的代价提供尽量高的安全保护。在大多数情况下,信息加密是保证信息在传输中的机密性的惟一方法。据不完全统计,已经公开发表的各种加密算法多达数百种。如果按照收发双方密钥是否相同来分类,可以将这些加密算法分为常规密钥算法和公开密钥算法。采用常规密钥方案加密时,收信方和发信方使用相同的密钥,即加密密钥和解密密钥是相同或等价的,其优点是保密强度高,能够经受住时间的检验和攻击,但其密钥必须通过安全的途径传送。因此,密钥管理成为系统安全的重要因素。采用公开密钥方案加密时,收信方和发信方使用的密钥互不相同,而且几乎不可能从加密密钥推导出解密密钥。公开密钥加密方案的优点是可以适应网络的开放性要求,密钥管理较为简单,尤其可方便地实现数字签名和验证。
加密策略虽然能够保证信息在网络传输的过程中不被非法读取,但是不能够解决在网络上通信的双方相互确认彼此身份的真实性问题。这需要采用认证策略解决。所谓认证,是指对用户的身份“验明正身”。目前的网络安全解决方案中,多采用两种认证形式,一种是第三方认证,另一种是直接认证。基于公开密钥框架结构的交换认证和认证的管理,是将网络用于电子政务、电子业务和电子商务的基本安全保障。它通过对受信用户颁发数字证书并且联网相互验证的方式,实现了对用户身份真实性的确认。
除了用户数字证书方案外,网络上的用户身份认证,还有针对用户账户名+静态密码在使用过程中的脆弱性推出的动态密码认证系统,以及近年来正在迅速发展的各种利用人体生理特征研制的生物电子认证方法。
❼ 密钥认证是当前最好的加密方式吗我不太明白
简单的来说:加密程度不同,也就是安全性不同。
WEP使用一个静态的密钥来加密所有的通信。WPA不断的转换密钥。WPA采用有效的密钥分发机制,可以跨越不同厂商的无线网卡实现应用。另外WPA的另一个优势是,它使公共场所和学术环境安全地部署无线网络成为可能。而在此之前,这些场所一直不能使用WEP。WEP的缺陷在于其加密密钥为静态密钥而非动态密钥。这意味着,为了更新密钥,IT人员必须亲自访问每台机器,而这在学术环境和公共场所是不可能的。另一种办法是让密钥保持不变,而这会使用户容易受到攻击。由于互操作问题,学术环境和公共场所一直不能使用专有的安全机制。
WPA工作原理
WPA包括暂时密钥完整性协议(Temporal Key Integrity Protocol,TKIP)和802.1x机制。TKIP与802.1x一起为移动客户机提供了动态密钥加密和相互认证功能。WPA通过定期为每台客户机生成惟一的加密密钥来阻止黑客入侵。TKIP为WEP引入了新的算法,这些新算法包括扩展的48位初始向量与相关的序列规则、数据包密钥构建、密钥生成与分发功能和信息完整性码(也被称为逗Michael地码)。在应用中,WPA可以与利用802.1x和EAP(一种验证机制)的认证服务器(如远程认证拨入用户服务)连接。这台认证服务器用于保存用户证书。这种功能可以实现有效的认证控制以及与已有信息系统的集成。由于WPA具有运行逗预先共享的密钥模式地的能力,SOHO环境中的WPA部署并不需要认证服务器。与WEP类似,一部客户机的预先共享的密钥(常常被称为逗通行字地)必须与接入点中保存的预先共享的密钥相匹配,接入点使用通行字进行认证,如果通行字相符合,客户机被允许访问接入点。
WPA弥补了WEP的安全问题
除了无法解决拒绝服务(DoS)攻击外,WPA弥补了WEP其他的安全问题。黑客通过每秒发送至少两个使用错误密钥的数据包,就可以造成受WPA保护的网络瘫痪。当这种情况发生时,接入点就会假设黑客试图进入网络,这台接入点会将所有的连接关闭一分钟,以避免给网络资源造成危害,连接的非法数据串会无限期阻止网络运行,这意味着用户应该为关键应用准备好备份进程。
总结:WPA比WEP的安全更高。
小常识:目前已经有WPA2的加密通信,是WPA的增强型版本,与WPA相比,WPA2新增了支持AES的加密方式。
三个安全性的排序为:WEP<WPA<WPA2。
❽ 如何设计加密的认证方式(也有叫安全类型的)要选wpa2-psk
不被蹭网的方法:
方法其实很简单,主要就是我们太大意了,让人钻了空子,下面分为几步构筑我们的防线:
注意:所有操作均在无线路由器的“无线”中操作,通常进入无线路由器的IP地址是192.168.1.1或192.168.18.1
步骤/方法
首先是不要让那些蹭网的人找到你,找到 隐藏SSID(或允许SSID广播)这一项,选择“是”,如果是括号里面的说法,则选“否”,这样你的无线网就不会出现在他们的搜寻列表里了。
加密的认证方式(也有叫安全类型的)要选WPA2-PSK,这个加密算法是目前最安全的,但有的电脑还不支持这个加密算法,那就只能用WPA-PSK,这个比WPA2-PSK兼容性要好一些,安全性也只是差了一点点,不会有太大影响,有的路由会把这两个选项加在一起(WPA-PSK/WPA2-PSK),这样更安全,简直跟铁桶一样,如果有WPA加密(或加密方法)的选项,选AES。
密码要设置一个加强密码,即字母、数字、符号三位一体的密码,最好不要低于20位,此密码中不要有诸如:0或o,9或q之类容易混淆的字符。
无线中一般都有个访问控制或权限,可设置为允许和禁止两种方式,我们现在设置成允许,然后打开你要用无线上网的电脑,在桌面上用右键单击网上邻居后选属性,在无线网络连接上单击右键选属性,单击“配置”,进入“高级”选项卡,下面的白框中有个MAC地址,记下来,填到无线路由的允许列表中,表示已经对这台电脑开通无线访问权限,其他不在表中的亦不能访问,如果再有电脑要连接无线路由,依次类推加入允许列表即可。
5
进入无线路由的用户名和访问密码要重新修改,以免被人攥改。