三大著名数学难题
『壹』 世界三大数学未解难题是
费尔马大定理 应该被人证明了
四色猜想 据说是靠计算机证明了,但程序冗长,能看完或者看明白的也不多。
哥德巴赫猜想 确实无人能证。
『贰』 现在数学3大难题是什么题目告诉我
歌德巴赫猜想:(1)任何大于2的偶数都能分成两个素数之和 (2)任何大于5的奇数都能分成三个素数之和 很明显,(2)是一的推论 (2)已经被证明,是前苏联著名数学家伊·维诺格拉多夫用“圆法”和他自己创造的“三角和法”证明了充分大的奇数都可表为三个奇素数之和,就是著名的三素数定理。这也是目前为止,歌德巴赫猜想最大的突破。 在歌德巴赫猜想的证明过程中,还提出过这么个命题:每一个充分大的偶数,都可以表为素因子不超过m个与素因子不超过n个的两个数之和。这个命题简记为“m+n” 显然“1+1”正是歌德巴赫猜想的基础命题,“三素数定理”只是一个很重要的推论。 1973年,陈景润改进了“筛法”,证明了“1+2”,就是充分大的偶数,都可表示成两个数之和,其中一个是素数,另一个或者是素数,或者是两个素数的乘积。陈景润的这个证明结果被称为“陈氏定理”是至今为止,歌德巴赫猜想的最高记录.最后要证明的是1+1 费马声最后定理:一个看起来很简单的定理这个定理的内 容是有关一个方程式 x2 + y2 =z2的正整数解的问题,当n=2时就是我们所熟知的毕氏定 理(中国古代又称勾股弦定理):x2 + y2 =z2,此处z表一直角形之斜边而x、y为其之 两股,也就是一个直角三角形之斜边的平方等於它的两股的平方和,这个方程式当然有 整数解(其实有很多),例如:x=3、y=4、z=5;x=6、y=8、z=10;x=5、y=12、z=13… 等等。 费马声称当n>2时,就找不到满足xn +yn = zn的整数解,例如:方程式x3 +y3=z3就无法 找到整数解。 四色猜想:人们在实践中发现:在每张地图上,最多使用四种颜色就能给所有有公共边界的地区着上不同的颜色。例如中国地图上的山西省与内蒙、山西、河南、湖北、四川、甘肃、宁夏七省毗邻,似乎需要八种颜色才能把它们区分开,实际上只要四种颜色就够了,不信可以找来中国地图看一看。 实践中有这样的结果,要在理论上予以证明却不是那么容易。这是数学史上一个困扰人们多年的著名难题。为了圆满地解决地图着色问题,人们已经努力了一百多年。1840年,德国几何学家莫比乌斯以假说的形式向他的学生提出过这一问题。1852年10月23日,英国数学家摩根在一封信中提过这样一件事:有一个学生格里斯问他,为什么无论多么复杂的地图都可以仅用四种颜色就能将相邻的国家区分开?希望能在数学上予以证明。 “四色问题”提出来以后,最初并没有引起广泛的重视,许多数学家都低估了它的难度。就连素以谦虚著称的德国数论专家闵可夫斯基(1864~1909)竟要在课堂上当堂给学生证明出来,结果过了几个星期仍没有证明出来。这样,“四色问题”就成了世界上最著名的问题之一,一百多年中“四色问题”使数学家深为困扰,没有人能证明它,也没有人推翻它。 因此,目前四色问题结果还只能叫作“四色猜想”,只有确实从理论上证明了它的正确性之后才能称作“四色定理”。
『叁』 当今世界三大数学难题
世界近代三大数学难题之一四色猜想
四色猜想的提出来自英国。1852年,毕业于伦敦大学的弗南西斯.格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家着上不同的颜色。”这个结论能不能从数学上加以严格证明呢?他和在大学读书的弟弟格里斯决心试一试。兄弟二人为证明这一问题而使用的稿纸已经堆了一大叠,可是研究工作没有进展。
1852年10月23日,他的弟弟就这个问题的证明请教他的老师、著名数学家德.摩尔根,摩尔根也没有能找到解决这个问题的途径,于是写信向自己的好友、著名数学家哈密尔顿爵士请教。哈密尔顿接到摩尔根的信后,对四色问题进行论证。但直到1865年哈密尔顿逝世为止,问题也没有能够解决。
1872年,英国当时最著名的数学家凯利正式向伦敦数学学会提出了这个问题,于是四色 猜想成了世界数学界关注的问题。世界上许多一流的数学家都纷纷参加了四色猜想的大会战 。1878~1880年两年间,著名的律师兼数学家肯普和泰勒两人分别提交了证明四色猜想的论文,宣布证明了四色定理,大家都认为四色猜想从此也就解决了。
11年后,即1890年,数学家赫伍德以自己的精确计算指出肯普的证明是错误的。不久,泰勒的证明也被人们否定了。后来,越来越多的数学家虽然对此绞尽脑汁,但一无所获。于是,人们开始认识到,这个貌似容易的题目, 实是一个可与费马猜想相媲美的难题:先辈数学大师们的努力,为后世的数学家揭示四色猜想之谜铺平了道路。
进入20世纪以来,科学家们对四色猜想的证明基本上是按照肯普的想法在进行。1913年,伯克霍夫在肯普的基础上引进了一些新技巧,美国数学家富兰克林于1939年证明了22国以下的地图都可以用四色着色。1950年,有人从22国推进到35国。1960年,有人又证明了39国以下的地图可以只用四种颜色着色;随后又推进到了50国。看来这种推进仍然十分缓慢。电子计算机问世以后,由于演算速度迅速提高,加之人机对话的出现,大大加快了对四色猜想证明的进程。1976年,美国数学家阿佩尔与哈肯在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿判断,终于完成了四色定理的证明。四色猜想的计算机证明,轰动了世界。它不仅解决了一个历时100多年的难题,而且有可能成为数学史上一系列新思维的起点。不过也有不少数学家并不满足于计算机取得的成就,他们还在寻找一种简捷明快的书面证明方法。
--------
世界近代三大数学难题之一 费马最后定理
被公认执世界报纸牛耳地位地位的纽约时报於1993年6月24日在其一版头题刊登了一则有
关数学难题得以解决的消息,那则消息的标题是「在陈年数学困局中,终於有人呼叫『
我找到了』」。时报一版的开始文章中还附了一张留着长发、穿着中古世纪欧洲学袍的
男人照片。这个古意盎然的男人,就是法国的数学家费马(Pierre de Fermat)(费马
小传请参考附录)。费马是十七世纪最卓越的数学家之一,他在数学许多领域中都有极
大的贡献,因为他的本行是专业的律师,为了表彰他的数学造诣,世人冠以「业余王子
」之美称,在三百六十多年前的某一天,费马正在阅读一本古希腊数学家戴奥芬多斯的
数学书时,突然心血来潮在书页的空白处,写下一个看起来很简单的定理这个定理的内
容是有关一个方程式 x2 + y2 =z2的正整数解的问题,当n=2时就是我们所熟知的毕氏定
理(中国古代又称勾股弦定理):x2 + y2 =z2,此处z表一直角形之斜边而x、y为其之
两股,也就是一个直角三角形之斜边的平方等於它的两股的平方和,这个方程式当然有
整数解(其实有很多),例如:x=3、y=4、z=5;x=6、y=8、z=10;x=5、y=12、z=13…
等等。
费马声称当n>2时,就找不到满足xn +yn = zn的整数解,例如:方程式x3 +y3=z3就无法
找到整数解。
当时费马并没有说明原因,他只是留下这个叙述并且也说他已经发现这个定理的证明妙
法,只是书页的空白处不够无法写下。始作俑者的费马也因此留下了千古的难题,三百
多年来无数的数学家尝试要去解决这个难题却都徒劳无功。这个号称世纪难题的费马最
后定理也就成了数学界的心头大患,极欲解之而后快。
十九世纪时法国的法兰西斯数学院曾经在一八一五年和一八六0年两度悬赏金质奖章和
三百法郎给任何解决此一难题的人,可惜都没有人能够领到奖赏。德国的数学家佛尔夫
斯克尔(P?Wolfskehl)在1908年提供十万马克,给能够证明费马最后定理是正确的人,
有效期间为100年。其间由於经济大萧条的原因,此笔奖额已贬值至七千五百马克,虽然
如此仍然吸引不少的「数学痴」。
二十世纪电脑发展以后,许多数学家用电脑计算可以证明这个定理当n为很大时是成立的
,1983年电脑专家斯洛文斯基借助电脑运行5782秒证明当n为286243-1时费马定理是正确
的(注286243-1为一天文数字,大约为25960位数)。
虽然如此,数学家还没有找到一个普遍性的证明。不过这个三百多年的数学悬案终於解
决了,这个数学难题是由英国的数学家威利斯(Andrew Wiles)所解决。其实威利斯是
利用二十世纪过去三十年来抽象数学发展的结果加以证明。
五0年代日本数学家谷山丰首先提出一个有关椭圆曲现的猜想,后来由另一位数学家志
村五郎加以发扬光大,当时没有人认为这个猜想与费马定理有任何关联。在八0年代德
国数学家佛列将谷山丰的猜想与费马定理扯在一起,而威利斯所做的正是根据这个关联
论证出一种形式的谷山丰猜想是正确的,进而推出费马最后定理也是正确的。这个结论
由威利斯在1993年的6月21日於美国剑桥大学牛顿数学研究所的研讨会正式发表,这个报
告马上震惊整个数学界,就是数学门墙外的社会大众也寄以无限的关注。不过威利斯的
证明马上被检验出有少许的瑕疵,於是威利斯与他的学生又花了十四个月的时间再加以
修正。1994年9月19日他们终於交出完整无瑕的解答,数学界的梦魇终於结束。1997年6
月,威利斯在德国哥庭根大学领取了佛尔夫斯克尔奖。当年的十万法克约为两百万美金
,不过威利斯领到时,只值五万美金左右,但威利斯已经名列青史,永垂不朽了。
要证明费马最后定理是正确的
(即xn + yn = zn 对n33 均无正整数解)
只需证 x4+ y4 = z4 和xp+ yp = zp (P为奇质数),都没有整数解。
----------------
世界近代三大数学难题之一 哥德巴赫猜想
哥德巴赫是德国一位中学教师,也是一位著名的数学家,生于1690年,1725年当选为俄国彼得堡科学院院士。1742年,哥德巴赫在教学中发现,每个不小于6的偶数都是两个素数(只能被和它本身整除的数)之和。如6=3+3,12=5+7等等。 1742年6月7日,哥德巴赫写信将这个问题告诉给意大利大数学家欧拉,并请他帮助作出证明。欧拉在6月30日给他的回信中说,他相信这个猜想是正确的,但他不能证明。叙述如此简单的问题,连欧拉这样首屈一指的数学家都不能证明,这个猜想便引起了许多数学家的注意。他们对一个个偶数开始进行验算,一直算到3.3亿,都表明猜想是正确的。但是对于更大的数目,猜想也应是对的,然而不能作出证明。欧拉一直到死也没有对此作出证明。从此,这道著名的数学难题引起了世界上成千上万数学家的注意。200年过去了,没有人证明它。哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的“明珠”。到了20世纪20年代,才有人开始向它靠近。1920年、挪威数学家布爵用一种古老的筛选法证明,得出了一个结论:每一个比大的偶数都可以表示为(99)。这种缩小包围圈的办法很管用,科学家们于是从(9十9)开始,逐步减少每个数里所含质数因子的个数,直到最后使每个数里都是一个质数为止,这样就证明了“哥德巴赫”。 1924年,数学家拉德马哈尔证明了(7+7);1932年,数学家爱斯尔曼证明了(6+6);1938年,数学家布赫斯塔勃证明了(5十5),1940年,他又证明了(4+4);1956年,数学家维诺格拉多夫证明了(3+3);1958年,我国数学家王元证明了(2十3)。随后,我国年轻的数学家陈景润也投入到对哥德巴赫猜想的研究之中,经过10年的刻苦钻研,终于在前人研究的基础上取得重大的突破,率先证明了(l十2)。至此,哥德巴赫猜想只剩下最后一步(1+1)了。陈景润的论文于1973年发表在中国科学院的《科学通报》第17期上,这一成果受到国际数学界的重视,从而使中国的数论研究跃居世界领先地位,陈景润的有关理论被称为“陈氏定理”。1996年3月下旬,当陈景润即将摘下数学王冠上的这颗明珠,“在距离哥德巴赫猜想(1+1)的光辉顶峰只有飓尺之遥时,他却体力不支倒下去了……”在他身后,将会有更多的人去攀登这座高峰。
『肆』 世界三大数学难题是什么
1、费马大定理
2、四色问题
3、哥德巴赫猜想
『伍』 世界三大数学难题之一植树问题
植树问题公式:直线植树: 距离/间隔 +1 = 棵数
四周植树: 距离/间隔 = 棵数
关于《植树问题》
《植树问题》这节课现在的案例很多,但因为这是一堂发展学生思维能力的课,所以怎样的教学目标定位才是适合学生的发展的,应该说是很难把握的。其次是第一节课要学生学到什么?是掌握其中一点(棵数=段数+1),还是在此基础上,让学生对这一问题有一个整体的把握,即既要理解+1的原因,又要理解—1的原因,和不加不减的原因。
宋晶晶老师结合多种版本的案例,给我们演绎了一堂精彩的数学课,我觉得她在了解学生的基础上,使相当一部分学生在原有的知识基础上,对植树问题的原因理解的更透彻了。
这节课的主要过程是通过生活中的例子,引导学生通过画图等,体验段数和棵数之间的关系,得出结论,再通过举例使学生联系生活,对生活中的例子进行辨析,在辨析中进一步理解+1的原因。最后通过闯关活动,激励学生去攻克一个又一个难关(3个变化题),使全体学生都能积极思考,从中进一步理解植树问题的内涵。在交流、反馈中,还引导学生应用一一对应的思想去思考验证,对中下学生的体验和理解帮助很大。
我觉得宋老师这堂课是成功的,是适合她的班级的,但换到其他班级,不一定适合,如果学生一点基础都没有,练习的难度要降低,才能取得理想的效果。
关于《植树问题》的两点思考:
不巧的很,仙桃市小学数学优秀青年骨干教师网络教研中心培训会暨重学新课标演讲会与仙桃市2007春季学期备考会重叠了。因此,虽然中途赶来,但还是没有完整地听完《植树问题》这节课,遗憾之余(事实上,寥寥几分钟,执教教师的机智、艺术还是给我留下了很深的印象),只能简短地谈谈自己对《植树问题》的几点思考。
说是对《植树问题》的几点思考,不如说对建立模型的几点思考更准确。
笔者以为,目前在模型的建立上面,有几点误区:
一、重形象直观,轻抽象概括。以《植树问题》为例,两端都栽树,很多老师喜欢以手为例。两个手指之间有几个间隔?三个手指呢?四个、五个呢?你能发现什么规律?这里,执教教师就仓促了一些。其实,这里教师还可进一步引导:6个手指有多少个间隔……100个手指呢?你是怎样知道的?这就逼着学生跳出“手”这一具体形象,依靠表象进行抽象概括,思维无疑进了一步。
二、重归纳发现,轻演绎推理。两端植树,树的棵数=间隔数+1。正如前面案例所描述的,这是一个典型的归纳发现的过程。那么,对于本节课的另一教学任务,《植树问题》的另一类型:两端都不植树的情况,是否也依然要用归纳发现的方法呢?这当然仁者见仁,智者见智。不过,我认为以下教法很重要。因为,在我看来,“两端植树”和“两端都不植树”二者实质是一样的,两端植树,树的棵数=间隔数+1,把两端的树去掉,树的棵数就减少了2,也就是“间隔数+1-2”,加上一个1再减上一个2,间隔数总的来说少了1,用模型表示就是“间隔数-1”。
笔者以为,以上教法不仅是沟通二者之间联系的需要,更重要的是,这是渗透数学思维的需要:即学生数学思维的发展不仅需要归纳发现的能力,同时也需要演绎推理的能力。
事实上,这正是现在模型教学所匿乏的。
书本上的知识:
植树问题是在一定的线路上,根据总路程、间隔长和棵数进行植树的问题。
为使其更直观,用图示法来说明。树用点来表示,植树的沿线用线来表示,这样就把植树问题转化为一条非封闭或封闭的线上的“点数”与相邻两点间的线的段数之间的关系问题。
专题分析:
一、在线段上的植树问题可以分为以下三种情形。
1、如果植树线路的两端都要植树,那么植树的棵数应比要分的段数多1,即:棵数=段数+1。
2、如果植树线路只有一端要植树,那么植树的棵数和要分的段数相等,即:棵数=段数。
3、如果植树线路的两端都不植树,那么植树的棵数比要分的段数少1,即:棵数=段数-1。
二、在封闭线路上植树,棵数与段数相等,即:棵数=段数。
三、在方形线路上植树,如果每个顶点都要植树。则棵数=(每边的棵数-1)×边数。
例题:
例子1,长方形场地:一个长84米,宽54米的长方形苹果园中,苹果树的株距是2米,行距是3米.这个苹果园共种苹果树多少棵?
解:
解法一:
①一行能种多少棵?84÷2=42(棵).|
②这块地能种苹果树多少行?54÷3=18(行).
③这块地共种苹果树多少棵?42×18=756(棵).
如果株距、行距的方向互换,结果相同:
(84÷3)×(54÷2)=28×27=756(棵).
解法二:
①这块地的面积是多少平方米?
84×54=4536(平方米).
②一棵苹果树占地多少平方米?
2×3=6(平方米).
③这块地能种苹果树多少棵?
4536÷6=756(棵).
当长方形土地的长、宽分别能被株距、行距整除时,可用上述两种方法中的任意一种来解;当长方形土地的长、宽不能被株距、行距整除时,就只能用第二种解法来解.
但有些问题从表面上看,并没有出现“植树”二字,但题目实质上是反映封闭线段或不封闭线段长度、分隔点、每段长度三者之间的关系。锯木头问题就是典型的不封闭线段上,两头不植树问题。所锯的段数总比锯的次数多一。上楼梯问题,就是把每上一层楼梯所需的时间看成一个时间间隔,那么: 上楼所需总时间 =(终点层—起始层)×每层所需时间。而方阵队列问题,看似与植树问题毫不相干,实质上都是植树问题。
例子2,直线场地:在一条马路的两旁植树,每隔3米植一棵,植到头还剩3棵;每隔2.5米植一棵,植到头还缺少37棵,求这条马路的长度。
解:
马路长度为X
X/3+1+3=X/2.5+1-37
2.5X+7.5+22.5=3X+7.5-277.5
0.5X=300
X=600
得:马路长度为600米
例子3,圆形场地(难题):有一个圆形花坛,绕它走一圈是120米。如果在花坛周围每隔6米栽一株丁香花,再在每相邻的两株丁香花之间等距离地栽2株月季花。可栽丁香花多少株?可栽月季花多少株?每2株紧相邻的月季花相距多少米
解:
解:根据棵数=全长÷间隔可求出栽丁香花的株数:
120÷6=20(株)
由于是在每相邻的2株丁香花之间栽2株月季花,丁香花的株数与丁香花之间的间隔数相等,因此,可栽月季花:
2×20=40(株)
由于2株丁香花之间的2株月季花是紧相邻的,而2株丁香花之间的距离被2株月季花分为3等份,因此紧相邻2株月季花之间距离为:
6÷3=2(米)
答:可栽丁香花20株,可栽月季花40株,2株紧相邻月季花之间相距2米。
例5 在圆形水池边植树,把树植在距离岸边均为3米的圆周上,按弧长计算,每隔2米植一棵树,共植了314棵。水池的周长是多少米?(适于六年级程度)
解:先求出植树线路的长。植树线路是一个圆的周长,这个圆的周长是:
2×314=628(米)
这个圆的直径是:
628÷3.14=200(米)
由于树是植在距离岸边均为3米的圆周上,所以圆形水池的直径是:
200-3×2=194(米)
圆形水池的周长是:
194×3.14=609.16(米)
综合算式:
(2×314÷3.14-3×2)×3.14
=(200-6)×3.14
=194×3.14
=609.16(米)
『陆』 近代数学三大难题是什么
世界近代三大数学难题 [编辑本段]费尔马大定理 费尔马大定理起源于三百多年前,挑战人类3个世纪,多次震惊全世界,耗尽人类众多最杰出大脑的精力,也让千千万万业余者痴迷。终于在1994年被安德鲁·怀尔斯攻克。古希腊的丢番图写过一本著名的“算术”,经历中世纪的愚昧黑暗到文艺复兴的时候,“算术”的残本重新被发现研究。 1637年,法国业余大数学家费尔马(Pierre de Fremat)在“算术”的关于勾股数问题的页边上,写下猜想:x^n+ y^n =z^n 是不可能的(这里n大于2;x,y,z,n都是非零整数)。此猜想后来就称为费尔马大定理。费尔马还写道“我对此有绝妙的证明,但此页边太窄写不下”。一般公认,他当时不可能有正确的证明。猜想提出后,经欧拉等数代天才努力,200年间只解决了n=3,4,5,7四种情形。1847年,库木尔创立“代数数论”这一现代重要学科,对许多n(例如100以内)证明了费尔马大定理,是一次大飞跃。 历史上费尔马大定理高潮迭起,传奇不断。其惊人的魅力,曾在最后时刻挽救自杀青年于不死。他就是德国的沃尔夫斯克勒,他后来为费尔马大定理设悬赏10万马克(相当于现在160万美元多),期限1908-2007年。无数人耗尽心力,空留浩叹。最现代的电脑加数学技巧,验证了400万以内的N,但这对最终证明无济于事。1983年德国的法尔廷斯证明了:对任一固定的n,最多只有有限多个x,y,z振动了世界,获得费尔兹奖(数学界最高奖)。 历史的新转机发生在1986年夏,贝克莱·瑞波特证明了:费尔马大定理包含在“谷山丰—志村五朗猜想 ” 之中。童年就痴迷于此的怀尔斯,闻此立刻潜心于顶楼书房7年,曲折卓绝,汇集了20世纪数论所有的突破性成果。终于在1993年6月23日剑桥大学牛顿研究所的“世纪演讲”最后,宣布证明了费尔马大定理。立刻震动世界,普天同庆。不幸的是,数月后逐渐发现此证明有漏洞,一时更成世界焦点。这个证明体系是千万个深奥数学推理连接成千个最现代的定理、事实和计算所组成的千百回转的逻辑网络,任何一环节的问题都会导致前功尽弃。怀尔斯绝境搏斗,毫无出路。1994年9月19日,星期一的早晨,怀尔斯在思维的闪电中突然找到了迷失的钥匙:解答原来就在废墟中!他热泪夺眶而出。怀尔斯的历史性长文“模椭圆曲线和费尔马大定理”1995年5月发表在美国《数学年刊》第142卷,实际占满了全卷,共五章,130页。1997年6月27日,怀尔斯获得沃尔夫斯克勒10万马克悬赏大奖。离截止期10年,圆了历史的梦。他还获得沃尔夫奖(1996.3),美国国家科学家院奖(1996.6),费尔兹特别奖(1998.8)。 四色问题-四色问题被中国内蒙古赤峰阿旗新民乡司法所的孟庆军用逻辑数学证明 四色问题的内容是:“任何一张地图只用四种颜色就能使具有共同边界的国家着上不同的颜色。”用数学语言表示,即“将平面任意地细分为不相重叠的区域,每一个区域总可以用1,2,3,4这四个数字之一来标记,而不会使相邻的两个区域得到相同的数字。”(右图) 这里所指的相邻区域,是指有一整段边界是公共的。如果两个区域只相遇于一点或有限多点,就不叫相邻的。因为用相同的颜色给它们着色不会引起混淆。 四色猜想的提出来自英国。1852年,毕业于伦敦大学的弗南西斯·格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家都被着上不同的颜色。”这个现象能不能从数学上加以严格证明呢?他和在大学读书的弟弟格里斯决心试一试。兄弟二人为证明这一问题而使用的稿纸已经堆了一大叠,可是研究工作没有进展。 1852年10月23日,他的弟弟就这个问题的证明请教了他的老师、著名数学家德·摩尔根,摩尔根也没有能找到解决这个问题的途径,于是写信向自己的好友、著名数学家汉密尔顿爵士请教。汉密尔顿接到摩尔根的信后,对四色问题进行论证。但直到1865年汉密尔顿逝世为止,问题也没有能够解决。 1872年,英国当时最著名的数学家凯利正式向伦敦数学学会提出了这个问题,于是四色猜想成了世界数学界关注的问题。世界上许多一流的数学家都纷纷参加了四色猜想的大会战。1878~1880年两年间,著名的律师兼数学家肯普和泰勒两人分别提交了证明四色猜想的论文,宣布证明了四色定理,大家都认为四色猜想从此也就解决了。 肯普的证明是这样的:首先指出如果没有一个国家包围其他国家,或没有三个以上的国家相遇于一点,这种地图就说是“正规的”(左图)。如为正规地图,否则为非正规地图(右图)。一张地图往往是由正规地图和非正规地图联系在一起,但非正规地图所需颜色种数一般不超过正规地图所需的颜色,如果有一张需要五种颜色的地图,那就是指它的正规地图是五色的,要证明四色猜想成立,只要证明不存在一张正规五色地图就足够了。 肯普是用归谬法来证明的,大意是如果有一张正规的五色地图,就会存在一张国数最少的“极小正规五色地图”,如果极小正规五色地图中有一个国家的邻国数少于六个,就会存在一张国数较少的正规地图仍为五色的,这样一来就不会有极小五色地图的国数,也就不存在正规五色地图了。这样肯普就认为他已经证明了“四色问题”,但是后来人们发现他错了。 不过肯普的证明阐明了两个重要的概念,对以后问题的解决提供了途径。第一个概念是“构形”。他证明了在每一张正规地图中至少有一国具有两个、三个、四个或五个邻国,不存在每个国家都有六个或更多个邻国的正规地图,也就是说,由两个邻国,三个邻国、四个或五个邻国组成的一组“构形”是不可避免的,每张地图至少含有这四种构形中的一个。 肯普提出的另一个概念是“可约”性。“可约”这个词的使用是来自肯普的论证。他证明了只要五色地图中有一国具有四个邻国,就会有国数减少的五色地图。自从引入“构形”,“可约”概念后,逐步发展了检查构形以决定是否可约的一些标准方法,能够寻求可约构形的不可避免组,是证明“四色问题”的重要依据。但要证明大的构形可约,需要检查大量的细节,这是相当复杂的。 11年后,即1890年,在牛津大学就读的年仅29岁的赫伍德以自己的精确计算指出了肯普在证明上的漏洞。他指出肯普说没有极小五色地图能有一国具有五个邻国的理由有破绽。不久,泰勒的证明也被人们否定了。人们发现他们实际上证明了一个较弱的命题——五色定理。就是说对地图着色,用五种颜色就够了。后来,越来越多的数学家虽然对此绞尽脑汁,但一无所获。于是,人们开始认识到,这个貌似容易的题目,其实是一个可与费马猜想相媲美的难题。 进入20世纪以来,科学家们对四色猜想的证明基本上是按照肯普的想法在进行。1913年,美国著名数学家、哈佛大学的伯克霍夫利用肯普的想法,结合自己新的设想;证明了某些大的构形可约。后来美国数学家富兰克林于1939年证明了22国以下的地图都可以用四色着色。1950年,有人从22国推进到35国。1960年,有人又证明了39国以下的地图可以只用四种颜色着色;随后又推进到了50国。看来这种推进仍然十分缓慢。 高速数字计算机的发明,促使更多数学家对“四色问题”的研究。从1936年就开始研究四色猜想的海克,公开宣称四色猜想可用寻找可约图形的不可避免组来证明。他的学生丢雷写了一个计算程序,海克不仅能用这程序产生的数据来证明构形可约,而且描绘可约构形的方法是从改造地图成为数学上称为“对偶”形着手。 他把每个国家的首都标出来,然后把相邻国家的首都用一条越过边界的铁路连接起来,除首都(称为顶点)及铁路(称为弧或边)外,擦掉其他所有的线,剩下的称为原图的对偶图。到了六十年代后期,海克引进一个类似于在电网络中移动电荷的方法来求构形的不可避免组。在海克的研究中第一次以颇不成熟的形式出现的“放电法”,这对以后关于不可避免组的研究是个关键,也是证明四色定理的中心要素。 电子计算机问世以后,由于演算速度迅速提高,加之人机对话的出现,大大加快了对四色猜想证明的进程。美国伊利诺大学哈肯在1970年着手改进“放电过程”,后与阿佩尔合作编制一个很好的程序。就在1976年6月,他们在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿判断,终于完成了四色定理的证明,轰动了世界。 这是一百多年来吸引许多数学家与数学爱好者的大事,当两位数学家将他们的研究成果发表的时候,当地的邮局在当天发出的所有邮件上都加盖了“四色足够”的特制邮戳,以庆祝这一难题获得解决。 “四色问题”的被证明仅解决了一个历时100多年的难题,而且成为数学史上一系列新思维的起点。在“四色问题”的研究过程中,不少新的数学理论随之产生,也发展了很多数学计算技巧。如将地图的着色问题化为图论问题,丰富了图论的内容。不仅如此,“四色问题”在有效地设计航空班机日程表,设计计算机的编码程序上都起到了推动作用。 不过不少数学家并不满足于计算机取得的成就,他们认为应该有一种简捷明快的书面证明方法。直到现在,仍由不少数学家和数学爱好者在寻找更简洁的证明方法。 [编辑本段]哥德巴赫猜想 史上和质数有关的数学猜想中,最著名的当然就是“哥德巴赫猜想”了。 1742年6月7日,德国数学家哥德巴赫在写给著名数学家欧拉的一封信中,提出了两个大胆的猜想: 一、任何不小于6的偶数,都是两个奇质数之和; 二、任何不小于9的奇数,都是三个奇质数之和。 这就是数学史上著名的“哥德巴赫猜想”。显然,第二个猜想是第一个猜想的推论。因此,只需在两个猜想中证明一个就足够了。 同年6月30日,欧拉在给哥德巴赫的回信中, 明确表示他深信哥德巴赫的这两个猜想都是正确的定理,但是欧拉当时还无法给出证明。由于欧拉是当时欧洲最伟大的数学家,他对哥德巴赫猜想的信心,影响到了整个欧洲乃至世界数学界。从那以后,许多数学家都跃跃欲试,甚至一生都致力于证明哥德巴赫猜想。可是直到19世纪末,哥德巴赫猜想的证明也没有任何进展。证明哥德巴赫猜想的难度,远远超出了人们的想象。有的数学家把哥德巴赫猜想比喻为“数学王冠上的明珠”。 我们从6=3+3、8=3+5、10=5+5、……、100=3+97=11+89=17+83、……这些具体的例子中,可以看出哥德巴赫猜想都是成立的。有人甚至逐一验证了3300万以内的所有偶数,竟然没有一个不符合哥德巴赫猜想的。20世纪,随着计算机技术的发展,数学家们发现哥德巴赫猜想对于更大的数依然成立。可是自然数是无限的,谁知道会不会在某一个足够大的偶数上,突然出现哥德巴赫猜想的反例呢?于是人们逐步改变了探究问题的方式。 1900年,20世纪最伟大的数学家希尔伯特,在国际数学会议上把“哥德巴赫猜想”列为23个数学难题之一。此后,20世纪的数学家们在世界范围内“联手”进攻“哥德巴赫猜想”堡垒,终于取得了辉煌的成果。 20世纪的数学家们研究哥德巴赫猜想所采用的主要方法,是筛法、圆法、密率法和三角和法等等高深的数学方法。解决这个猜想的思路,就像“缩小包围圈”一样,逐步逼近最后的结果。 1920年,挪威数学家布朗证明了定理“9+9”,由此划定了进攻“哥德巴赫猜想”的“大包围圈”。这个“9+9”是怎么回事呢?所谓“9+9”,翻译成数学语言就是:“任何一个足够大的偶数,都可以表示成其它两个数之和,而这两个数中的每个数,都是9个奇质数之积。” 从这个“9+9”开始,全世界的数学家集中力量“缩小包围圈”,当然最后的目标就是“1+1”了。 1924年,德国数学家雷德马赫证明了定理“7+7”。很快,“6+6”、“5+5”、“4+4”和“3+3”逐一被攻陷。1957年,我国数学家王元证明了“2+3”。1962年,中国数学家潘承洞证明了“1+5”,同年又和王元合作证明了“1+4”。1965年,苏联数学家证明了“1+3”。 1966年,我国著名数学家陈景润攻克了“1+2”,也就是:“任何一个足够大的偶数,都可以表示成两个数之和,而这两个数中的一个就是奇质数,另一个则是两个奇质数的积。”这个定理被世界数学界称为“陈氏定理”。 由于陈景润的贡献,人类距离哥德巴赫猜想的最后结果“1+1”仅有一步之遥了。但为了实现这最后的一步,也许还要历经一个漫长的探索过程。有许多数学家认为,要想证明“1+1”,必须通过创造新的数学方法,以往的路很可能都是走不通的。
『柒』 数学三大世界难题
1/费马最后定理
四色猜想
哥德巴赫猜想 2、不算,尺规作图,三等分任意角这道题是很容易做出来的。所谓的难题是绝大部分人都不会
『捌』 世界上的四大数学难题是指哪四个
1、立方倍积问题
立方倍积就是利用尺规作图作一个立方体,使其体积等于已知立方体的二倍,这个问题也叫倍立方问题,也称之为德里安问题、Delos问题。
若已知立方体的棱长为1, 则立方倍积问题就可以转化为方程x³-2=0解的尺规作图问题。根据尺规作图准则,该方程之解无法作出。
因此,立方倍积问题和三等分角问题、化圆为方问题一起,成为古希腊三大几何难题。立方倍积问题不能用尺规作图方法解决的严格证明是法国数学家万采尔(P.-L. Wantzel,1814-1848)于1837年给出的。
2、三等分任意角问题
三等分角是古希腊三大几何问题之一。三等分角是古希腊几何尺规作图当中的名题,和化圆为方、倍立方问题被并列为古代数学的三大难题之一,而如今数学上已证实了这个问题无解。该问题的完整叙述为:在只用圆规及一把没有刻度的直尺将一个给定角三等分。
在尺规作图(尺规作图是指用没有刻度的直尺和圆规作图)的前提下,此题无解。若将条件放宽,例如允许使用有刻度的直尺,或者可以配合其他曲线使用,可以将一给定角分为三等分。
3、化圆为方
化圆为方是古希腊尺规作图问题之一,即:求一正方形,其面积等于一给定圆的面积。由π为超越数可知,该问题仅用直尺和圆规是无法完成的。但若放宽限制,这一问题可以通过特殊的曲线来完成。如西皮阿斯的割圆曲线,阿基米德的螺线等。
4、哥德巴赫猜想
哥德巴赫1742年给欧拉的信中哥德巴赫提出了以下猜想:任一大于2的偶数都可写成两个质数之和。但是哥德巴赫自己无法证明它,于是就写信请教赫赫有名的大数学家欧拉帮忙证明,但是一直到死,欧拉也无法证明。
因现今数学界已经不使用“1也是素数”这个约定,原初猜想的现代陈述为:
任一大于5的整数都可写成三个质数之和。(n>5:当n为偶数,n=2+(n-2),n-2也是偶数,可以分解为两个质数的和;当n为奇数,n=3+(n-3),n-3也是偶数,可以分解为两个质数的和)
欧拉在回信中也提出另一等价版本,即任一大于2的偶数都可写成两个质数之和。
今日常见的猜想陈述为欧拉的版本。把命题"任一充分大的偶数都可以表示成为一个素因子个数不超过a个的数与另一个素因子不超过b个的数之和"记作"a+b"。
1966年陈景润证明了"1+2"成立,即"任一充分大的偶数都可以表示成二个素数的和,或是一个素数和一个半素数的和"。