当前位置:首页 » 新型创造 » 微积分的发明

微积分的发明

发布时间: 2020-12-13 09:49:18

Ⅰ 微积分的出现(发明)有怎样的意义

微积分是为了解决变量的变化率而存在的.从数学的角度讲,是研究变量在函数中回的作用.从物理的角度讲,是为了解答决关于速度与加速度的定义的问
题.“变”这个字是微积分最大的奥义,要从哲学的角度来理解数学,而不是单纯的会计算.所有的数理能力最后都要上升为自身的哲学,这样才能作到天人合一.
微积分是在人们解决不了复杂运动问题时所引入的概念.
以高中物理中感应电动势的定义式为例,E=线圈砸数乘以磁通的变化比上时间的变化,实际上磁通的变化比上时间的变化就是磁通的导数.也即常说的磁通的变化率.
微积分的现实应用,就是微元法.
设一个微小变化dX
在这个微小变化里应用一条经典物理公式,列出一个方程.

Ⅱ 谁能够告诉我微积分是怎样发明出来的

这个可以写一本书的。
大概说下:微分最开始是在实际应用中计专算极值时发现的,属费马、牛顿、莱布尼兹都做出了贡献。牛顿创立了流数法和反流数法,相当于现在的微分和积分。莱布尼兹在微积分数学符号发明方面做出了贡献。那时理论并没有这么完善,牛顿流数法求微分过程是这样的
设f(x)=x^2,给自变量一个增量a
[f(x+a)-f(x)]/a=[(x+a)^2-x^2]/a=2x+a
(1)
牛顿简单令a=0得到微分f'(x)=2x
注意到(1)中a做分母不为0,但是接着又直接令a=0,这种a即为0又不为0的矛盾,令后世争论不休。那时还没有极限的概念,因此微分定义不严格。这些是后来数学家柯西等做了大量的严格化的工作。
积分最开始是用于计算曲线面积的。我们现在用的积分符号就是莱布尼兹发明的。牛顿和莱布尼兹发现了微积分基本定理,具有重大意义。

Ⅲ 微积分的发明人是谁

1684年,《学术学报》上发表了德国数学家莱布尼茨的一篇文章,宣布他发现一种微分法,即“一种求极大极小和切线的新方法,它也适用于分式和无理量,以及这种新方法的奇妙类型的计算”,1686年,他又发表了类似的文章,讨论“潜在的几何与分析不可分和无限”等。一年以后,物理学家牛顿出版了他的巨著《自然哲学之数学原理》,也谈到了他研究的求极大与极小的问题。实际上,他们俩人都发现了微积分的数学原理。于是,就有关创立微积分的优先权问题,发生了一场激烈的争论。遗憾的是,由于人们不明真相,使30多岁的莱布尼茨长期蒙受冤屈。1699年,瑞士数学家法蒂奥德迪利给皇家学会写文章,说莱布尼茨的思想获自牛顿。接着,不少科学家接踵而至,都说莱布尼茨不是发明者。萨维尔天文学教授凯尔,则指控莱布尼茨是剽切者。为此,莱布尼茨参与了争论,辩白自己的冤枉。但没有人相信他。1716年11月14日,莱布尼茨含冤逝世,朝廷竟不闻不问,教士们也借口说莱布尼茨是“无信仰者”而不予理睬。

直到莱布尼茨死后,英国皇家学会为牛顿和莱布尼茨发现微积分的优先权问题,专门成立了调查评判委员会。经过长期调查,终于弄清事实,委员会在《通讯》上宣布,牛顿的“流数术”和莱布尼茨的“无穷小算法”只是名词不同,实质上是一回事,他俩都是微积分的发明人。

原来事情是这样的,1676年,牛顿在写给莱布尼茨的信中,宣布了他的二项式定理,提出了根据流的方程求流数的问题。但在他们交换的信件中,牛顿却隐瞒了确定极大值和极小值的方法,以及作切线的方法等。而莱布尼茨在给牛顿的回信中写道,他也发现了一种同样的方法,并诉说了他的方法。这个方法与牛顿的方法几乎没有什么两样。二者的区别是:牛顿主要是在力学研究的基础上,运用几何方法研究微积分;而莱布尼茨主要是在研究曲线和切线的面积问题上,运用分析学方法引进微积分概念,得出运算法则。牛顿是在微积分的应用上更多地结合了运动学,造诣较莱布尼茨高出一筹。但莱布尼茨的表达式采用的数学符号,既简洁又准确地揭示出微分、积分的实质,远远优于牛顿。因此,他们二人发明微积分各有千秋。

莱布尼茨1646年6月21日出生于德国东部的莱比锡城。他的父亲是哲学教授,但在他6岁时父亲就过早去世了。然而,父亲留下的大量藏书却为莱布尼茨提供了丰富的知识源泉。

莱布尼茨8岁入学,少年时就可以用多种语言表达思想。15岁时考入有名的莱比锡大学,开始对数学发生兴趣。1666年,莱布尼茨转入纽伦堡的何尔道夫大学。这一年他发表了第一篇数学论文《论组合的艺术》,显示了他的数学才华。这篇论文,正是近代数学的一个分支“数理逻辑”的先声,他也因此成为数理逻辑的创始人。

大学毕业后,莱布尼茨获得法学博士学位,投身外交界。1672年3月他作为大使出访法国巴黎,为期4年。在巴黎工作之余钻研数学,结识了荷兰数学家惠更斯。并利用业余时间攻读笛卡尔、费尔马、帕斯卡等人的原著。为他步入数学王国的殿堂打下了坚实的基础。

1676年,莱布尼茨到汉诺威,在那里他博览群书,创立了微积分的基本概念和运算方法,成就了他一生最伟大的发明。

莱布尼茨陆续创立了一些表示微积分的符号:dx表示微分,即拉丁文“differentia”的第一个字母,意为“分细”。∫表示积分,即拉丁文“summa”的第一个字母“s”拉长,意为“求和”。他创立的这些符号,为数学语言的规范化和独立化起到了极为重要的推动作用。这些符号一直用到今天。

此外,莱布尼茨还提出了使用“函数”一词,首次引进了“常量”,“变量”和“参变量”,确立了“坐标”、“纵坐标”的名称。他对变分法的建立及在微分方程、微分几何、某些特殊曲线(如悬链曲线)的研究上都做出了重大贡献。

Ⅳ 微积分究竟是牛顿发明的还是莱布尼茨

牛顿和莱布尼茨分别从各自不同角度发明了微积分。牛顿是从物理学的角度发明出的微积分。莱布尼兹是从数学角度,采用了合理的数学符号进行表述,比较直观和方便理解,这些符号一直用到了现在还在应用。

十七世纪下半叶,在前人工作的基础上,英国大科学家牛顿和德国数学家莱布尼茨分别在自己的国度里独自研究和完成了微积分的创立工作,虽然这只是十分初步的工作。

他们的最大功绩是把两个貌似毫不相关的问题联系在一起,一个是切线问题(微分学的中心问题),一个是求积问题(积分学的中心问题)。

(4)微积分的发明扩展阅读:

牛顿的发展

牛顿在1671年写了《流数术和无穷级数》,这本书直到1736年才出版,它在这本书里指出,变量是由点、线、面的连续运动产生的,否定了以前自己认为的变量是无穷小元素的静止集合。他把连续变量叫做流动量,把这些流动量的导数叫做流数。

牛顿在流数术中所提出的中心问题是:已知连续运动的路径,求给定时刻的速度(微分法);已知运动的速度求给定时间内经过的路程(积分法) 。

莱布尼茨的发展

德国的莱布尼茨(又译“莱布尼兹”)是一个博才多学的学者,1684年,他发表了现在世界上认为是最早的微积分文献,这篇文章有一个很长而且很古怪的名字《一种求极大极小和切线的新方法,它也适用于分式和无理量,以及这种新方法的奇妙类型的计算》。

就是这样一篇说理也颇含糊的文章,却有划时代的意义。它已含有现代的微分符号和基本微分法则。

1686年,莱布尼茨发表了第一篇积分学的文献。他是历史上最伟大的符号学者之一,他所创设的微积分符号,远远优于牛顿的符号,这对微积分的发展有极大的影响。现今我们使用的微积分通用符号就是当时莱布尼茨精心选用的。

参考资料来源:网络-微积分-微积分历史

Ⅳ 微积分是什么时候诞生的

牛顿在其1665年5月20日的一份手稿中已有微积分的记载,在这份手稿中,牛顿引进了一种带双点的字母,它相当于导数的齐次形式。因此,有人将这一日作为微积分的光荣诞生日。事实上,牛顿对微积分的研究以运动学为背景开始于1664年秋,就在这一年,牛顿已经对微积分有了较为清楚的认识。

1665年夏至1667年春,牛顿在家乡躲避瘟疫期间,对微积分的研究取得了突破性进展。据牛顿自述,1665年11月,他发明正流数术(微分法),次年5月建立反流数术(积分法)。1666年10月,牛顿将前两年的研究成果整理成一篇总结性论文——《流数简论》,这也是历史上第一篇系统的微积分文献,标志着微积分的诞生。在以后20余年的时间里,牛顿始终不渝地努力改进、完善自己的微积分学说,先后完成三篇微积分论文:《运用无穷多项方程的分析学》(简称《分析学》,1669年)、《流数法与无穷级数》(简称《流数法》,1671年)、《曲线求积术》(简称《求积术》,1691年)。它们反映了牛顿微积分学说的发展过程。然而牛顿的这些有关微积分的论文并没有及时公开发表,他的微积分学说的公开表述最早出现在1687年出版的力学名著《自然哲学的数学原理》一书中。因此,《原理》也成为数学史上的划时代著作。

牛顿对自己的科学著作的发表,态度非常谨慎,他的最成熟的微积分著述《曲线求积术》直到1704年才以《光学》的附录形式发表,其他的论文发表得更晚,《分析学》在牛顿去世后才公开发表。

微积分产生后,其运算的完整性和应用的广泛性充分显示了这一新的数学工具的威力,微积分迅速地成为研究自然科学的有力工具。

Ⅵ 谁发明了微积分

十七世纪的许多著名的数学家、天文学家、物理学家都为解决几类问题作了大量的研究工作,如法国的费马、笛卡尔、罗伯瓦、笛沙格;英国的巴罗、瓦里士;德国的开普勒;意大利的卡瓦列利等人都提出许多很有建树的理论。为微积分的创立做出了贡献。
十七世纪下半叶,在前人工作的基础上,英国大科学家牛顿和德国数学家莱布尼茨分别在自己的国度里独自研究和完成了微积分的创立工作,虽然这只是十分初步的工作。他们的最大功绩是把两个貌似毫不相关的问题联系在一起,一个是切线问题(微分学的中心问题),一个是求积问题(积分学的中心问题)。
牛顿和莱布尼茨建立微积分的出发点是直观的无穷小量,因此这门学科早期也称为无穷小分析,这正是现在数学中分析学这一大分支名称的来源。牛顿研究微积分着重于从运动学来考虑,莱布尼茨却是侧重于几何学来考虑的。
牛顿
牛顿在1671年写了《流数法和无穷级数》,这本书直到1736年才出版,它在这本书里指出,变量是由点、线、面的连续运动产生的,否定了以前自己认为的变量是无穷小元素的静止集合。他把连续变量叫做流动量,把这些流动量的导数叫做流数。牛顿在流数术中所提出的中心问题是:已知连续运动的路径,求给定时刻的速度(微分法);已知运动的速度求给定时间内经过的路程(积分法)。
莱布尼茨
德国的莱布尼茨是一个博才多学的学者,1684年,他发表了现在世界上认为是最早的微积分文献,这篇文章有一个很长而且很古怪的名字《一种求极大极小和切线的新方法,它也适用于分式和无理量,以及这种新方法的奇妙类型的计算》。就是这样一篇说理也颇含糊的文章,却有划时代的意义。它已含有现代的微分符号和基本微分法则。1686年,莱布尼茨发表了第一篇积分学的文献。他是历史上最伟大的符号学者之一,他所创设的微积分符号,远远优于牛顿的符号,这对微积分的发展有极大的影响。现在我们使用的微积分通用符号就是当时莱布尼茨精心选用的。

Ⅶ 微积分是谁发明的

艾萨克·牛顿、莱布尼茨。

十七世纪下半叶,在前人工作的基础上,英国大科学家牛顿和德国数学家莱布尼茨分别在自己的国度里独自研究和完成了微积分的创立工作,虽然这只是十分初步的工作。

他们的最大功绩是把两个貌似毫不相关的问题联系在一起,一个是切线问题(微分学的中心问题),一个是求积问题(积分学的中心问题) 。

牛顿和莱布尼茨建立微积分的出发点是直观的无穷小量,因此这门学科早期也称为无穷小分析,这正是现时数学中分析学这一大分支名称的来源。牛顿研究微积分着重于从运动学来考虑,莱布尼茨却是侧重于几何学来考虑的。

(7)微积分的发明扩展阅读:

微积分的应用:

微积分是与应用联系着发展起来的,最初牛顿应用微积分学及微分方程为了从万有引力定律导出了开普勒行星运动三定律。

此后,微积分学极大的推动了数学的发展,同时也极大的推动了天文学、力学、物理学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学各个分支中的发展。

并在这些学科中有越来越广泛的应用,特别是计算机的出现更有助于这些应用的不断发展。微积分作为一门交叉性很强的科目,除了在物理等自然科学上有强实用性外,在经济学上也有很强的推动作用。

Ⅷ 微积分是发明还是发现

1、这两个词抄都不是很恰袭当.不过,“发明”比“发现”好一点.
2、最好的说法,是“建立”了微积分的理论;
3、楼主的说法完全正确,其实质是“揭示”了一个规律.
综合来说就是:揭示了规律,建立了理论.

Ⅸ 微积分是牛顿发明的吗

微积分不是牛顿发明的,他只是对微积分进行了发展。

从微积分成为一门学科回来说,是在17世纪,但是积分的思答想早在古代就已经产生了。公元前7世纪,古希腊科学家、哲学家泰勒斯就对球的面积、体积、与长度等问题的研究就含有微积分思想。

公元前3世纪,古希腊的数学家、力学家阿基米德(公元前287~前212)的著作《圆的测量》和《论球与圆柱》中就已含有积分学的萌芽,他在研究解决抛物线下的弓形面积、球和球冠面积、螺线下的面积和旋转双曲线所得的体积的问题中就隐含着近代积分的思想。

中国古代数学家也产生过积分学的萌芽思想,例如三国时期的刘徽,他对积分学的思想主要有两点:割圆术及求体积问题的设想。

(9)微积分的发明扩展阅读:

到了十七世纪,有许多科学问题需要解决,这些问题也就成了促使微积分产生的因素。归结起来,大约有四种主要类型的问题:

第一类是研究运动的时候直接出现的,也就是求即时速度的问题。

第二类问题是求曲线的切线的问题。

第三类问题是求函数的最大值和最小值问题。

第四类问题是求曲线长、曲线围成的面积、曲面围成的体积、物体的重心、一个体积相当大的物体作用于另一物体上的引力。

Ⅹ 微积分到底是牛顿和莱布尼兹发明的

普遍认为,微积分是牛顿和莱布尼兹分别独立提出来的,而微积分理论则是到二十世纪初才逐步完善的。

热点内容
美发店认证 发布:2021-03-16 21:43:38 浏览:443
物业纠纷原因 发布:2021-03-16 21:42:46 浏览:474
全国著名不孕不育医院 发布:2021-03-16 21:42:24 浏览:679
知名明星确诊 发布:2021-03-16 21:42:04 浏览:14
ipad大专有用吗 发布:2021-03-16 21:40:58 浏览:670
公务员协议班值得吗 发布:2021-03-16 21:40:00 浏览:21
知名书店品牌 发布:2021-03-16 21:39:09 浏览:949
q雷授权码在哪里买 发布:2021-03-16 21:38:44 浏览:852
图书天猫转让 发布:2021-03-16 21:38:26 浏览:707
宝宝水杯品牌 发布:2021-03-16 21:35:56 浏览:837