当前位置:首页 » 新型创造 » 发明激光

发明激光

发布时间: 2020-12-17 07:48:00

⑴ 激光是谁发明

激光(LASER)是受激而发射的光,是“光受激辐射放大”的简称,它的含义是通过辐射的受激发射而实现光的放大(Light
Amplification
by
Stimulated
Emission
of
Radiation).产生激光的器件叫做激光器,激光是一种强烈的、集中的、高度平行的相干光束.激光(1960年由美国人Maiman发明)、晶体管(1948年由Bardeen和Brattain发明)与原子能反应堆(1942年由意大利人Fermi发明)被人们视为20世纪最重要的三大技术发明,对现代科学技术的发展产生了深远影响.

⑵ 激光是什么时候发明的

激光是神奇的,但它不是普罗米修斯从天上偷来的圣火。激光是人造的,但它不是常人随心所欲可以制造出来的。激光的发现以及到最后被广泛运用,是众多科学家付出艰辛努力的结果。

1958年,美国物理学家查尔斯·汤斯和他的同事肖洛在《物理评论》杂志上发表了他们关于《受激辐射的光放大》的重要论文,文中称:物质在受到与其分子固有振荡频率相同的能量激励时,都会产生不发散的强光——激光。这一理论奠定了激光发展的基础。这项研究成果发表后,汤斯和肖洛并没有继续进行研究和实验,这项研究成果最终被美国加利福尼亚州休斯航空公司实验室里一个名不见经传的年轻研究员——西奥多·梅曼利用了。

激光扫描识码器汤斯曾预言,微波激射器的原理,在一定的条件下可以产生激光。梅曼决心亲自实践这一预言。他花了两年时间从事这方面的研究,还动手制作有关的装置,选择各种工作物质。他终于选定了红宝石晶体(在刚玉中掺入铬离子)作为工作物质。

这样的选择在当时是一个颇为大胆的尝试,因为当时的理论界对红宝石晶体发光的可能性是持否定态度的。但是梅曼坚定了自己的选择。他通过实验测量了红宝石晶体的量子效率,分析了红宝石晶体达到能级粒子数反转的条件。他将红宝石晶体材料做成一个直径1厘米、高2厘米的圆柱体,将两端仔细磨成平行的平面,并镀上了银,构成谐振腔。他把它嵌入一个螺旋型的脉冲闪光灯内,使红宝石晶体接上了泵浦源。这样,他完成了世界上第一台即将产生激光的——被他称为“受激辐射光放大器”的装置。这个装置就是世界上出现的第一台激光器。

奇迹终于出现了,1960年5月的一天,梅曼和往常一样来到实验室。他打开了泵浦源的开关,让脉冲氙灯的电能馈入红宝石中,此时,这台装置中发射出了第一束闪光。这束光,色单纯,所有的波都在同一个方向上;发射到几千千米以外也不会因发散而失去作用;聚焦到某一点上可以达到极大的能量,甚至可以超过太阳表面的温度值。这束光,就是人类有史以来所获得的第一束最特殊的光——激光!

梅曼平静地写下了实验记录:红色,波长694.3纳米。1960年5月15日,梅曼宣布了这个记录。这一束在试验室第一次制得的人造激光,虽然仅持续了3亿分之一秒的对间,但它却标志着人类文明史上一个新时刻的来临。

⑶ 激光是谁发明的、用干什么

激光的理论基础起源于物理学家爱因斯坦,1917年爱因斯坦提出了一套全新的技术理论‘光与物质相互作用’。1960年7月7日,西奥多·梅曼宣布世界上第一台激光器诞生。前苏联科学家尼古拉·巴索夫于1960年发明了半导体激光器。

激光应用领域

激光加工技术是利用激光束与物质相互作用的特性对材料(包括金属与非金属)进行切割、焊接、表面处理、打孔、微加工以及做为光源,识别物体等的一门技术,传统应用最大的领域为激光加工技术。

激光技术是涉及到光、机、电、材料及检测等多门学科的一门综合技术,传统上看,它的研究范围一般可分为

1.激光加工系统。包括激光器、导光系统、加工机床、控制系统及检测系统。

2.激光加工工艺。包括切割、焊接、表面处理、打孔、打标、划线、微雕等各种加工工艺。

(3)发明激光扩展阅读

激光发展前景

激光功率已不足以描述切割能力的大小,亮度(Brightness)才是。亮度的定义是“单位面积单位立体角的激光功率”。

对比CO2激光器、碟片激光器和光纤激光器,可以得出这样的结论:直到5千瓦,以光纤激光的亮度最大,切割金属板最快最厚的当属光纤激光。

但实际上切割厚板尚不如CO2激光,尽管碳钢对近红外的1.07掺镱光纤激光的吸收率数倍于中红外10.6的CO2激光,但10倍于光纤激光波长的CO2激光之切缝比光纤的宽得多(一般2mm),氧气易于吹入。

这就是CO2激光46年来一直独占固体激光之鳌头的缘由。第一,国产激光切割机的量产与自主开发力度的加大,外国一线公司在华本土化的生产,缩小了二者的产品差距与价格差距。用户对国产机的认同度不断提高,其在2010年国内市场的占比高达80%。

第二,2010年我国千瓦以上大功率CO2激光切割机销量达1000台,占全球市场的20%-25%。上海团结普瑞玛、大族激光、武汉法利莱、奔腾楚天等一线厂商都有大幅的增长。最多一家竟占了国内市场的30%。

⑷ 问一下激光发明与发展历史

1953年,美国物理学家查尔斯·哈德·汤斯和他的学生阿瑟·肖洛制成了第一台微波量子放大器专,获得了高属度相干的微波束。
1958年,C.H.汤斯和A.L.肖洛把微波量子放大器原理推广应用到光频范围。
1960年,T.H.西奥多·梅曼制成了第一台红宝石激光器。
1961年,伊朗科学家A.贾文等人制成了氦氖激光器。
1962年,R.N.霍耳等人创制了砷化镓半导体激光器。
2013年,南非科学与工业研究委员会国家激光中心研究人员开发出世界首个数字激光器,开辟了激光应用的新前景。研究成果发表在2013年8月2日英国《自然通讯》杂志上。

⑸ 发明激光的人是谁

激光的发明可以追溯到1958年。当时Arthur L.Schawlow和Charles H.Townes在Physical Review上发表了一篇名为“Infr ared and Optical Masers ”的论文,从而开创了一个新的科学领域并产生了一个具数十亿美元产值的新工业。 Schawlow和Townes在二十世纪40年代和50年代早期从事微波波谱方面的研究工作。作为研究各种分子特性的有力工具,微波波谱技术其时颇引人注目。他们并没有想发明一种设备,使从通信到机械的各种产业发生翻天覆地的变化;他们所想的仅仅是开发一种设备来帮助他们研究分子结构。 初始工作 在加州技术学院获博士学位后,于1939年加入贝尔实验室。在那里,他从事包括微波发生、真空管和磁学等各种不同工作。后来,他转到固体物理领域,研究表面电子发射。 一天,也就是Townes到贝尔实验室的一年后,Townes实验室的主任Mervin Kelly通知大家“从星期一开始,你们研究雷达轰炸系统。”Townes不喜欢这项工作,但他知道二次世界大战已经打破了贝尔实验室的宁静。“我们相当努力地研究雷达轰炸系统,一年后我们将该系统装入飞机中,发现它非常有效。”Townes说。 专注于分子吸收研究 二战期间,Townes对航空无线电很感兴趣,但他的防雷达工作使他必须专注于微波波谱方面的研究。雷达系统以特定波长播发无线电信号,当这些信号碰到诸如战舰或飞机之类的固体物质,就会反射回雷达系统,从而雷达系统可以识别这些物体并定位。 Townes从事的雷达导航轰炸系统采用的波长是10cm及后来的3cm,但军方要求的波长是1.25cm。以便更好的定向以及在飞机上使用更小的天线。 湿度 Townes致力于1.25cm波长的工作。他知道,气体分子在固定波长可以吸收波形,尤其令他担心的是,大气层中的水蒸气(如雾、雨、云)可能会吸收 cm雷达信号。 “雷达已经建好,已调试好,但尚不能工作,主要存在水蒸气吸收问题”他说,该系统最多只能“见”到几英里开外,“……而且,要搜寻海上船只或类似的其它物体还有太多的局限。 迁至Columbia 战后,Townes在贝尔实验室专门从事分子波谱的研究工作。1948年,他获得了转到Columbia大学工作的机会。他说:“我到Columbia大学的部分原因是,Columbia大学更专注于物理学以及我感兴趣的原理定律。此外,我更喜欢大学生活,在大学工作一直是我心中所愿。” 微波波谱学科是Schawlow 和Townes在1949年第一次相见的共同基础。此时,Schawlow刚好在多伦多大学获得物理博士学位。然后,他到Columbia大学从事一研究基金项目,与Townes开始一道工作。 分子研究 在Columbia, Townes继续研究采用受激辐射探测气体分子波谱方面的工作,由此首先发明了maser(微波激射),后来发明了laser(激光)。 Townes知道,微波激射的波长越短,其与分子的作用越强,因而它是研究波谱的强有力工具。但当时要制造一种小到足以产生所需波长的设备超出了制造技术的水平。所以,Townes竭力解决用分子产生所需频率的技术限制问题。 在Franklin公园的奇想 有几个技术问题当时已经解决,其中包括热力学第二定律,实际上,热力学第二定律已告诉Townes时,分子不会产生超过固定量的能量。 在Townes参加华盛顿的一个毫米波发射的科学委员会会议时,他正考虑如何回避热力第二定律。一天早晨,他在Franklin公园一边散步,一边思考这个问题。“我想,热力学第二定律假设了热量是平衡,而我们不必考虑它。” 信封背面的计算 Townes从夹克中拿出了一个信封开始匆匆记下他关于要得到他所需的功率输出在谐振器中需多少分子的计算。然后,他回到酒店并将这个思想告诉了Schowlow。Townes说:“我告诉他这个构思,他马上同意了我的观点并说这非常有意义。”当Townes回到Columbia后,他让他的研究生James P.Gordon立即开始这个项目工作,后来还聘用了H.L Zeiger作助手。Schawlow没有参与maser的工作。但他说:“我亲眼目睹了他笔记本中的这项发明。” 同一年,Schawlow离开了Townes和Columbia到贝尔实验室担任了一个研究员的工作。“我在贝尔实验室主要从事超导电性的研究”,他说,“随后几年,我也没有在masers激动人心的发展中作过任何工作。” 研究maser Townes决定研究氨,氨是一个很强的吸收体,与波长的作用很强。“这是我的老爱好,我对氨知之甚多。我们有1.25cm波长的波腔,所有技术和波导。” 他从事maser工作时,很少有人对他的工作感兴趣。有一次他说:“我们很平静地以研究生的方式工作了三年,最后我们成功了。据我所知,其它人都不愿意从事这项工作。” 1953年,Townes Gordon 和Zeiger研制出一种叫maser的设备,可以通过发射物的受激发射实现微波放大。他们通过Columbia大学申请了该设备的专利。 与贝尔实验室合作 Townes知道,比微波波长更短的波长(如红外线和光波波长)在研究波谱方面可能是比maser产生的微波辐射更有用。 在Columbia期间,Townes 1956年荣任贝尔实验室的顾问工作。他可以访问实验室、与人交谈、视察项目并交流思想。他说:“这是一个很不错的顾问工作,所以我欣然接受!” Townes仍在思考光的受激辐射,并看望了已在贝尔实验室呆了5年的Schawlow。这两个科学家再度合作出版了一本《微波波谱》的书。Schawlow后来回忆说:“我在认真考虑如何将maser原理从微波应用到波长更短的波,如红外线波谱领域。后来发现Townes也在考虑这个问题,于是我们决定携手合作解决这个问题。” 将镜片放到空腔中 Schawlow的思想是在空腔的每一端放一个镜片,使光来回反射。这样,可消除光束在其它方向的激射。Schawlow和Townes探讨了该方案的可行性,并对之抱着极大的热情。1957年秋天,他们开始研究生产更短波长的设备原理。通过使用镜片,Schawlow想到,这些镜片的尺寸应当可调以便激光只有一个频率,一个特定频率可以在一个路径宽度范围内选定,镜片大小可调以便任何轻微的偏向运动都能被抑制。实际上,他去掉了大多数空腔,只保留了两端空腔。 Schawlow说:“我们不用中断我们的其它工作,我们只用了几个月的业余时间。”Schawlow研制设备,而Townes从事理论研究。Schawlow建议用常规固体材料来产生固体激光。 美国专利 八个月之后,他们的合作开花结果。1958年,他们就他们的工作合写了一篇言论文,此时他们尚未造出真实的激光,并且他们还通过贝尔实验室申请了一项专利。他们关于maser原理可推广应用到光谱领域的建议发表在Physical Review的第十二期杂志上。 两年后,Schawlow和Townes获得了激光发明的专利,与此同时Hughes Aircraft公司的Theodore Maiman制造出了可以工作的激光器。1961年,Schawlow离开贝尔实验室开始了其在Stanford的执教和研究工作,在Stanford,他进一步推动了激光在波谱领域的应用。他说:“Stanford给了我不能拒绝的承诺。” 赢得Nobel奖。 1964年,“由于在量子电子学领域中的基础工作导致基于maser-laser原理的谐振器和放大器的发明”,Townes与Moscow 的Lebedev学院的A.Prskhorov和N.Bason共同一起获得该年度的Nobel物理奖。 1981年,Schawlow也因其对激光光谱的贡献荣获该年度的Nobel物理奖。Townes说:“这项奖对Schlwlow来得太迟。” Schawlow回顾这项发明说“我们想到了它的通信和科学应用,而没有将它保留在心中。如果这样做,会妨碍我们做出激光发明。”

⑹ 激光技术是在什么年发明的

1、激光是20世纪60年代的新光源。由于激光具有方向性好、亮度高、单色性好等特点而得到广泛应用。激光加工是激光应用最有发展前途的领域之一,现在已开发出20多种激光加工技术。

2、发展:

激光具有单色性好、方向性强、亮度高等特点。现已发现的激光工作物质有几千种,波长范围从软X射线到远红外。

激光技术的核心是激光器,激光器的种类很多,可按工作物质、激励方式、运转方式、工作波长等不同方法分类。

根据不同的使用要求,采取一些专门的技术提高输出激光的光束质量和单项技术指标,比较广泛应用的单元技术有共振腔设计与选模、倍频、调谐、Q开关、锁模、稳频和放大技术等。

3、原理:

科学家在电管中以光或电流的能量来撞击某些晶体或原子易受激发的物质,使其原子的电子达到受激发的高能量状态,当这些电子要回复到平静的低能量状态时,原子就会射出光子,以放出多余的能量;而接著,这些被放出的光子又会撞击其它原子,激发更多的原子产生光子,引发一连串的「连锁反应」,并且都朝同一个方前进,形成强烈而且集中朝向某个方向的光;因此强的激光甚至可用作切割钢板!

4、特性:

激光被广泛应用是因为它的特性。(单色波长、同调性、平行光束)

激光几乎是一种单色光波,频率范围极窄,又可在一个狭小的方向内集中高能量,因此利用聚焦后的激光束可以对各种材料进行打孔。以红宝石激光器为例,它输出脉冲的总能量不够煮熟一个鸡蛋,但却能在3毫米的钢板上鉆出一个小孔。

激光拥有上述特性,并不是因为它有与别的光不同的光能,而是它的功率密度十分高,这就是激光被广泛应用的原因。

(6)发明激光扩展阅读:

我国早期激光技术的发展

1957年,王大珩等在长春建立了我国第一所光学专业研究所——中国科学院(长春)光学精密 仪器机械研究所(简称“光机所”)。在老一辈专家带领下,一批青年科技工作者迅速成长,邓锡铭是其中的突出代表。早在1958年美国物理学家肖洛、汤斯关于激光原理的著名论文发 表不久,他便积极倡导开展这项新技术研究,在短时间内凝聚了富有创新精神的中青年研究 队伍,提出了大量提高光源亮度、单位色性、相干性的设想和实验方案。

1960年世界第一台激光器问世。1961年夏,在王之江主持下,我国第一台红宝石激光器研制成功。此后短短几年内,激光技术迅速发展,产生了一批先进成果。各种类型的固体、气体、半导体和化学激 光器相继研制成功。在基础研究和关键技术方面、一系列新概念、新方法和新技术(如腔的Q突变及转镜调Q、行波放大、铼系离子的利用、自由电子振荡辐射等)纷纷提出并获得实施,其中不少具有独创性。

同时,作为具有高亮度、高方向性、高质量等优异特性的新光源,激光很快应用于各技术领域,显示出强大的生命力和竞争力。通信方面,1964年9月用激光演示传送电视图像,1964年11月实现3~30公里的通话。工业方面,1965年5月激光打孔机成功地用于拉丝模打孔生产,获得显著经济效益。医学方面,1965年6月激光视网膜焊接器进行了动物和临床实验 。国防方面,1965年12月研制成功激光漫反射测距机(精度为10米/10公里),1966年4月研制出遥控脉冲激光多普勒测速仪。

可以说,在起步阶段我国的激光技术发展迅速,无论是数量还是质量,都和当时国际水平接近,一项创新性技术能够如此迅速赶上世界先进行列,在我国近代科技发展史上并不多见。这些成绩的取得,尤其是能够把物理设想、技术方案顺利地转化成实际激光器件,主要得力于光机所多年来在技术光学、精密机械和电子技术方面积累的综合能力和坚实基础。一项新技术的开发,没有足够的技术支撑是很难形成气候的。

从1961年中国第一台激光器宣布研制成功至今,在全国激光科研、教学、生产和使用单位共 同努力下,我国形成了门类齐全、水平先进、应用广泛的激光科技领域,并在产业化上取得可喜进步,为我国科学技术、国民经济和国防建设作出了积极贡献,在国际上了也争得了一席之地。

⑺ 激光是怎么发明出来的

发现激光的第一人是美国的物理学家梅曼。

当时的梅曼还是一个名不见经传的年轻人。他早年研究过原子、分子光谱,这为他以后试制激光器奠定了良好的理论基础。后来,他又研究红宝石激波激射器,并有了成功的实践。这些都对他日后的成功打下了基础。但他的成功同样离不开他的高尚品格——探索精神和敢于向权威的挑战。

梅曼从1959年8月才转到激光的研究上来,当时美国的无线电物理学家汤斯和肖洛已经研究相关课题近10年,并刚刚在《物理学评论》上发表了著名的文章,认为红宝石不容易实现“受激发射”。与此同时,苏联科学院列别捷夫物理研究所的科学家们也提出了类似的看法。面对国内、国际著名的专家、学者提出的设想与方案,梅曼参与了这场激烈的竞争。

但是梅曼还是给红宝石建立起了解析模型并加以计算,不过计算结果表明,用红宝石作为材料将很难工作。随后梅曼开始试用多种其他材料,但结果都不理想。而后,他又重新转向对红宝石的研究,他希望以红宝石为样品,寻找出相应的材料,这种材料应该具有红宝石一样的优点:结构简单,结实耐用,此外还必须具备量子效应高的条件,因为量子效应低是红宝石作为激光材料的致命缺点。

对红宝石的深入研究很快使梅曼打消了另外再找其他材料的想法。他发现:含铬量合适的红宝石可以成为产生激光的最合适的材料。经过实验证明,以强光照射含铬量0.05%的红宝石,竟使得发光时的效应高达权威们原来试验结果的70倍。幸亏他当初又回过头来研究红宝石,否则激光器的发明又要推迟了。看来,好马也需要吃回头草。梅曼解决了一个划时代的问题,迎来了胜利的曙光。

在成功的喜悦中,梅曼对自己的实验装置作了进一步改善。他把一根长1.90厘米、半径为0.95厘米的红宝石圆柱体两端磨平后镀上银,放在螺旋形氙闪光灯中心,然后逐渐增强氙闪光灯的强度。当红宝石受到强光照射时,突然发射出一束深红色的光,它的亮度达到太阳表面亮度的4倍,这就是激光!

1960年美国研制成功世界上第一台红宝石激光器,我国于1961年研制成第一台红宝石激光器。从此,各种类型的激光器如雨后春笋,纷纷出现。激光与激光器的问世标志着人们掌握和利用光进入了一个新的阶段。从此,激光器的种类不断增多,性能不断完善,应用领域越来越广,在许多领域中激光还成了独领风骚的角色。

⑻ 激光是怎样发明的

激光是20世纪以来,继原子能、计算机、半导体之后,人类的又一重大发明。它的原理早在1916年已被著名的物理学家爱因斯坦发现,但直到1958年激光才被首次成功制造。

激光是在有理论准备和生产实践迫切需要的背景下应运而生的,它一问世就获得了异乎寻常的飞快发展,激光的发展不仅使古老的光学科学和光学技术获得了新生,而且导致一门新兴产业的出现。激光可使人们有效地利用前所未有的先进方法和手段,去获得空前的效益和成果,从而促进了生产力的发展。

⑼ 激光是谁发明的,到底有什么用

有关激光的理论最早由爱因斯坦于1917年提出。激光是由原子受激辐射出来的光。当原子从高能级跃迁到低能级会释放能量,就以光的形式辐射出来。普通光源就源于原子的自发辐射。相对于普通光源,激光单色性好、亮度高、方向性好。

一名自然科学爱好者,欢迎关注。您的点赞就是对我最大的支持。

⑽ 激光是谁发明的

激光的发明者是美国物理学家爱因斯坦。

激光是20世纪以来继核能、电脑、半导体之后,人类的又一重大发明,被称为“最快的刀”、“最准的尺”、“最亮的光”。英文名Light Amplification by Stimulated Emission of Radiation,意思是“通过受激辐射光扩大”。

激光的理论基础起源于物理学家爱因斯坦,1917年爱因斯坦提出了一套全新的技术理论光与物质相互作用。这一理论是说在组成物质的原子中,有不同数量的粒子(电子)分布在不同的能级上,在高能级上的粒子受到某种光子的激发,会从高能级跳到(跃迁)到低能级上。

这时将会辐射出与激发它的光相同性质的光,而且在某种状态下,能出现一个弱光激发出一个强光的现象。这就叫做“受激辐射的光放大”,简称激光。


(10)发明激光扩展阅读:

从微观角度看,激光是具有相同频率的大量光子的集合,获得具有优良性质的激光的关键就是使所有的光子都在同一频率上。这可以通过激光谐振腔获得。

我们在激光谐振腔中加入具有特定频率的光子后,可以使其中的原子在这些光子的频率上振荡,从而发射出具有相同频率的光子。这种类似于原子弹的“链式反应”的物理过程,可以使我们迅速获得大量具有某一特定频率的光子,这些光子通过调制之后,就可以以激光的形式发射出去了。

激光的应用途径,除了已经广泛应用的信息探测和信息传导等技术之外,还通过光子与物质粒子的相互作用,对一些微小的结构对象进行操作。

热点内容
美发店认证 发布:2021-03-16 21:43:38 浏览:443
物业纠纷原因 发布:2021-03-16 21:42:46 浏览:474
全国著名不孕不育医院 发布:2021-03-16 21:42:24 浏览:679
知名明星确诊 发布:2021-03-16 21:42:04 浏览:14
ipad大专有用吗 发布:2021-03-16 21:40:58 浏览:670
公务员协议班值得吗 发布:2021-03-16 21:40:00 浏览:21
知名书店品牌 发布:2021-03-16 21:39:09 浏览:949
q雷授权码在哪里买 发布:2021-03-16 21:38:44 浏览:852
图书天猫转让 发布:2021-03-16 21:38:26 浏览:707
宝宝水杯品牌 发布:2021-03-16 21:35:56 浏览:837