当前位置:首页 » 新型创造 » 谁发明虚数

谁发明虚数

发布时间: 2020-11-25 13:38:37

① 求高手解答:数学上发明虚数的目的是什么

参看http://..com/question/21078039.html

② 数学家为什么要发明虚数这个东西啊现实生活中没用的呀

大多数人最为熟悉的数有两种,即正数(+5,+17.5)和负数(-5,-17.5)。负数是在中世纪出现的,它用来处理3-5这类问题。从古代人看来,要从三个苹果中减去五个苹果似乎是不可能的。但是,中世纪的商人却已经清楚地认识到欠款的概念。“请你给我五个苹果,可是我只有三个苹果的钱,这样我还欠你两个苹果的钱。”这就等于说:(+3)-(+5)=(-2)。
正数及负数可以根据某些严格的规则彼此相乘。正数乘正数,其乘积为正。正数乘负数,其乘积为负。最重要的是,负数乘负数,其乘积为正。
因此,(+1)×(+1)=(+1);
(+1)×(-1)=(-1);
(-1)×(-1)=(+1)。
现在假定我们自问:什么数自乘将会得出+1?或者用数学语言来说,+1的平方根是多少?
这一问题有两个答案。一个答案是+1,因为(+1)×(+1)=(+1);另一个答案则是-1,因为(-1)
×(-1)=(+1)。数学家是用√ ̄(+1)=±1来表示这一答案的。(DeepKen注:(+1)在根号下)
现在让我们进一步提出这样一个问题:-1的平方根是多少?
对于这个问题,我们感到有点为难。答案不是+1,因为+1的自乘是+1;答案也不是-1,因为-1的自乘同
样是+1。当然,(+1)×(-1)=(-1),但这是两个不同的数的相乘,而不是一个数的自乘。
这样,我们可以创造出一个数,并给它一个专门的符号,譬如说#1,而且给它以如下的定义:#1是自乘时会得出-1的数,即(#1)×(#1)=(-1)。当这种想法刚提出来时,数学家都把这种数称为“虚数”,这只是因为
这种数在他们所习惯的数系中并不存在。实际上,这种数一点也不比普通的“实数”更为虚幻。这种所谓“虚数”具有一些严格限定的属性,而且和一般实数一样,也很容易处理。
但是,正因为数学家感到这种数多少有点虚幻,所以给这种数一个专门的符号“i”(imaginary)。我们可以把正
虚数写为(+i),把负虚数写为(-i),而把+1看作是一个正实数,把(-1)看作是一个负实数。因此我们可
以说√ ̄(-1)=±i。
实数系统可以完全和虚数系统对应。正如有+5,-17.32,+3/10等实数一样,我们也可以有
+5i,-17.32i,+3i/10等虚数。
我们甚至还可以在作图时把虚数系统画出来。
假如你用一条以0点作为中点的直线来表示一个正实数系统,那么,位于0点某一侧的是正实数,位于0点另一侧
的就是负实数。
这样,当你通过0点再作一条与该直线直角相交的直线时,你便可以沿第二条直线把虚数系统表示出来。第二条直线上0点的一侧的数是正虚数,0点另一侧的数是负虚数。这样一来,同时使用这两种数系,就可以在这个平面上把所有的数都表示出来。例如(+2)+(+3i)或(+3)+(-2i)。这些数就是“复数”。
数学家和物理学家发现,把一个平面上的所有各点同数字系统彼此联系起来是非常有用的。如果没有所谓虚数,
们就无法做到这一点了。

③ 谁发明的数轴

自古希腊以来,数学的发展形成两大主流:一支主流是几何,它研究图形及其变换,像点、直线、平面、三角形、多面体等等,都在它的研究之列;一支主流是代数,它研究数学(或是代表它们的字母)的运算,以及怎样解方程等等,像有理数、虚数、指数、对数、一元二次方程、方程组等等,都在它的研究之列。但是,在笛卡儿之前,这两大主流各管各地发展,彼此很少相关。笛卡儿企图在这两大主流之间“挖”一条“运河”,将它们沟通。

首先,他发明了“坐标系”,这是从一个原点出发互相垂直的两条数轴,一条X轴,另一条叫Y轴。有了这么一个简单的坐标系(严格讲来,这样的坐标系应称为”平面直角坐标系”)之后,如果平面上有一点,已知它到此平面坐标系的距离,那么这一点的位置就可以确定;反过来,如果平面上一点的位置已确定,那么这一点的位置就可以用它到坐标系的距离来表示。这样,笛卡儿应用坐标系建立了平面上的点和有顺序的实数对(一个表示X,一个表示Y)之间的一一对应关系,从而把几何研究的点与代数研究的数结合起来了。不仅如此,笛卡儿还用代数方程来描述几何图形,用几何图形来表示代数方程的计算结

是笛卡儿提出的平面直角坐标系 (也就是互相垂直的两条数轴)说中有这么一个故事: 有一天,笛卡尔(1596—1650,法国哲学家、数学家、物理学家)生病卧床,但他头脑一直没有休息,在反复思考一个问题:几何图形是直观的,而代数方程则比较抽象,能不能用几何图形来表示方程呢?这里,关键是如何把组成几何的图形的点和满足方程的每一组“数”挂上钩。他就拼命琢磨。通过什么样的办法、才能把“点”和“数”联系起来。突然,他看见屋顶角上的一只蜘蛛,拉着丝垂了下来,一会儿,蜘蛛又顺着丝爬上去,在上边左右拉丝。蜘蛛的“表演”,使笛卡尔思路豁然开朗。他想,可以把蜘蛛看做一个点,它在屋子里可以上、下、左、右运动,能不能把蜘蛛的每个位置用一组数确定下来呢?他又想,屋子里相邻的两面墙与地面交出了三条线,如果把地面上的墙角作为起点,把交出来的三条线作为三根数轴,那么空间中任意一点的位置,不是都可以用这三根数轴上找到的有顺序的三个数来表示吗?反过来,任意给一组三个有顺序的数,例如3、2、1,也可以用空间中的一个点 P来表示它们。同样,用一组数(a,b)可以表示平面上的一个点,平面上的一个点也可以用一组二个有顺序的数来表示。于是在蜘蛛的启示下,笛卡尔创建了直角坐标系。 无论这个传说的可*性如何,有一点是可以肯定的,就是笛卡尔是个勤于思考的人。这个有趣的传说,就象瓦特看到蒸汽冲起开水壶盖发明了蒸汽机一样,说明笛卡尔在创建直角坐标系的过程中,很可能是受到周围一些事物的启发,触发了灵感。 直角坐标系的创建,在代数和几何上架起了一座桥梁。它使几何概念得以用代数的方法来描述,几何图形可以通过代数形式来表达,这样便可将先进的代数方法应用于几何学的研究。 笛卡尔在创建直角坐标系的基础上,创造了用代数方法来研究几何图形的数学分支——解析几何。他的设想是:只要把几何图形看成是动点的运动轨迹,就可以把几何图形看成是由具有某种共同特性的点组成的。比如,我们把圆看成是一个动点对定点O作等距离运动的轨迹,也就可以把圆看作是由无数到定点O的距离相等的点组成的。我们把点看作是留成图形的基本元素,把数看成是组成方程的基本元素,只要把点和数挂上钩,也就可以把几何和代数挂上钩。 把图形看成点的运动轨迹,这个想法很重要!它从指导思想上,改变了传统的几何方法。笛卡尔根据自己的这个想法,在《几何学》中,最早为运动着的点建立坐标,开创了几何和代数挂钩的解析几何。在解析几何中,动点的坐标就成了变数,这是数学第一次引进变数。 恩格斯高度评价笛卡尔的工作,他说:“数学中的转折点是笛卡尔的变数。有了变数,运动进入了数学,有了变数,辩证法进入了数学。” 坐标方法在日常生活中用得很多。例如象棋、国际象棋中棋子的定位;电影院、剧院、体育馆的看台、火车车厢的座位及高层建筑的房间编号等都用到坐标的概念。 随着同学们知识的不断增加,坐标方法的应用会更加广泛。 坐标系的发展历史 如果把坐标法理解为通过某一特定系统中的若干数量来决定空间位置的方法,那么战国时代魏人石申用距度(或入宿度)和去极度两个数据来表示恒星在天球上位置的星表,可以说是一种球面坐标系统的坐标法。古希腊的地理学家和天文学家也广泛地使用球面坐标法。西晋人裴秀(223-271)提出“制图六体”,在地图绘制中使用了相当完备的平面网络坐标法。 用坐标法来刻划动态的、连结的点,是它沟通代数与几何而成为解析几何的主要工具的关键。阿波罗尼在<<圆锥曲线论>>中,已借助坐标来描述曲线。十四世纪法国学者奥雷斯姆用“经度”和“纬度”(相当于纵坐标和横坐标)的方程来刻划动点的轨迹。十七世纪,费马和笛卡儿分别创立解析几何,他们使用的都是斜角坐标系:即选定一条直线作为X轴,在其上选定一点为原点,y的值则由那些与X轴成一固定角度的线段的长表示。 1637年笛卡儿出版了他的著作<<方法论>>,这书有三个附录,其中之一名为<<几何学>>,解析几何的思想就包含在这个附录里。笛卡儿在<<方法论>>中论述了正确的思想方法的重要性,表示要创造为实践服务的哲学。笛卡儿在分析了欧几里得几何学和代数学各自的缺点,表示要寻求一种包含这两门科学的优点而没有它们的缺点的方法。这种方法就是几何与代数的结合----解析几何。按笛卡儿自己的话来说,他创立解析几何学是为了“决心放弃那仅仅是抽象的几何。这就是说,不再去考虑那些仅仅是用来练习思想的问题。我这样作,是为了研究另一种几何,即目的在于解释自然现象的几何”。关于解析几何学的产生对数学发展的重要意义,这里可以引用法国著名数学家拉格朗日的一段话:“只要代数同几何分道扬镳,它们的进展就缓慢,它们的应用就狭窄。但当这两门科学结合成伴侣时,它们就互相吸取新鲜的活力,从而以快速的步伐走向完善”。 十七世纪之后,西方近代数学开始了一个在本质上全新的阶段。正如恩格斯所指出的,在这个阶段里“最重要的数学方法基本上被确立了;主要由笛卡儿确立了解析几何,由耐普尔确立了对数,由莱布尼兹,也许还有牛顿确立了微积分”,而“数学中的转折点是笛卡儿的变量。有了它,运动进入了数学,因而,辩证法进入了数学,因而微分和积分的运算也就立刻成为必要的了”。恩格斯在这里不仅指出了十七世纪数学的主要内容,而且充分阐明了这些内容的重要意义。 解析几何学的创立,开始了用代数方法解决几何问题的新时代。从古希腊时起,在西方数学发展过程中,几何学似乎一直就是至高无上的。一些代数问题,也都要用几何方法解决。解析几何的产生,改变了这种传统,在数学思想上可以看作是一次飞跃,代数方程和曲线、曲面联系起来了。 最早引进负坐标的英国人沃利斯,最早把解析几何推广到三维空间的是法国人费马,最早应用三维直角坐标系的是瑞士人约翰 贝努利。“坐标”一词是德国人莱布尼兹创用的。牛顿首先使用极坐标,对于螺线、心形线以及诸如天体在中心力作用下的运动轨迹的研究甚为方便。不同的坐标系统之间可以互换,最早讨论平面斜角坐标系之间互换关系的是法国人范斯库腾。 我们今天常常把直角坐标系叫做笛卡儿坐标系,其实那是经过许多后人不断完善后的结果

④ 虚数是谁提出的

“虚数”这个名词是17世纪著名数学家、哲学家笛卡尔创制,

⑤ 虚数i 是真实存在的吗还是被人们创造出的数学工具

虚数i 不是真实存在的,是被人们创造出的数学工具。

⑥ 数学虚数在现实生活没有用,为什么要发明虚数

虚数闯进数的领域时,人们对它的实际用处一无所知,在实际生活中似乎没有用复数来表达的回量,因此在很长答一段时间里,人们对它产生过种种怀疑和误解。笛卡尔称“虚数”的本意就是指它是虚假的;莱布尼兹则认为:“虚数是美妙而奇异的神灵隐蔽所,它几乎是既存在又不存在的两栖物。”欧拉尽管在许多地方用了虚数,但又说:“一切形如,√-1,√-2的数学式子都是不可能有的,想象的数,因为它们所表示的是负数的平方根。对于这类数,我们只能断言,它们既不是什么都不是,也不比什么都不是多些什么,更不比什么都不是少些什么,它们纯属虚幻。”
继欧拉之后,挪威测量学家维塞尔提出把复数(a+bi)用平面上的点来表示。后来高斯又提出了复平面的概念,终于使复数有了立足之地,也为复数的应用开辟了道路。现 在,复数一般用来表示向量(有方向的量),这在水利学、地图学、航空学中的应用十分广泛,虚数越来越显示出其丰富的内容。

⑦ 虚数有何意义为什么要发明他,谁发明的,在哪些

《时间简史》我也看过的。其中虚数用的最妙的要数虚时间的定义了。不知道楼主什么学历,我按照你是高中生讲了哈。高中应该学过三维坐标系吧,那么你知道为什么要定义三维坐标吗?因为在高中物理与几何中,你只要确定了三维坐标,一切性质就确定了。理论上说,一个二维坐标(x,y)与x+yi是没有差别的(迪卡尔积不知道你们学了没有,没学也没关系,凑合着理解)。所以把三维坐标都变成复数没有任何意义,他就相当于一个6维坐标。然而,复数的许多良好性质与运算是普通二维坐标没法代替的。我们现在学一门课叫做复变函数,就是研究变量与自变量都是复数的函数的性质。这些性质可以对应到四维坐标,但是那就麻烦大了,而且既然专门有复变函数这门课我们何必要再研究思维空间呢。 总结一下我的观点:复数没有确切的到底是什么东西,他只是一种处理工具。借助《复变函数〉的研究给物理带来方便。至于虚时间,你不用深究,他就是构造了另一个时间度量,当我们的时间倒流时,他仍然是正着走的,你完全可以想象成一个二维时间,没有任何影响。因为时间简史很浅,他不会涉及太多关于复数的性质。 关于复数的妙用你可以看一下用复数解交流电灯棍工作原理的题,高中物理竞赛时我看到过。你会发现复数并不仅仅是数的扩充,很好用的!

⑧ 知道复数的发展史吗

起源编辑本段16世纪意大利米兰学者卡当(Jerome Cardan1501—1576)在1545年发表的《重要的艺术》一书中,公布了三次方程的一般解法,被后人称之为“卡当公式”。他是第一个把负数的平方根写到公式中的数学家,并且在讨论是否可能把10分成两部分,使它们的乘积等于40时,他把答案写成=40,尽管他认为和这两个表示式是没有意义的、想象的、虚无飘渺的,但他还是把10分成了两部分,并使它们的乘积等于40。给出“虚数”这一名称的是法国数学家笛卡尔(1596—1650),他在《几何学》(1637年发表)中使“虚的数”与“实的数”相对应,从此,虚数才流传开来。
数系中发现一颗新星——虚数,于是引起了数学界的一片困惑,很多大数学家都不承认虚数。德国数学家莱布尼茨(1646—1716)在1702年说:“虚数是神灵遁迹的精微而奇异的隐避所,它大概是存在和虚妄两界中的两栖物”。瑞士数学大师欧拉(1707—1783)说;“一切形如,习的数学武子都是不可能有的,想象的数,因为它们所表示的是负数的平方根。对于这类数,我们只能断言,它们既不是什么都不是,也不比什么都不是多些什么,更不比什么都不是少些什么,它们纯属虚幻。”然而,真理性的东西一定可以经得住时间和空间的考验,最终占有自己的一席之地。法国数学家达朗贝尔(1717—1783)在1747年指出,如果按照多项式的四则运算规则对虚数进行运算,那么它的结果总是的形式(a、b都是实数)(说明:现行教科书中没有使用记号=-i,而使用=一1)。法国数学家棣莫佛(1667—1754)在1730年发现公式了,这就是著名的棣莫佛定理。欧拉在1748年发现了有名的关系式,并且是他在《微分公式》(1777年)一文中第一次用i来表示一1的平方根,首创了用符号i作为虚数的单位。“虚数”实际上不是想象出来的,而它是确实存在的。挪威的测量学家成塞尔(1745—1818)在1779年试图给于这种虚数以直观的几何解释,并首先发表其作法,然而没有得到学术界的重视。
德国数学家阿甘得(1777—1855)在1806年公布了虚数的图象表示法,即所有实数能用一条数轴表示,同样,虚数也能用一个平面上的点来表示。在直角坐标系中,横轴上取对应实数a的点A,纵轴上取对应实数b的点B,并过这两点引平行于坐标轴的直线,它们的交点C就表示复数a+bi。象这样,由各点都对应复数的平面叫做“复平面”,后来又称“阿甘得平面”。高斯在1831年,用实数组(a,b)代表复数a+bi,并建立了复数的某些运算,使得复数的某些运算也象实数一样地“代数化”。他又在1832年第一次提出了“复数”这个名词,还将表示平面上同一点的两种不同方法——直角坐标法和极坐标法加以综合。统一于表示同一复数的代数式和三角式两种形式中,并把数轴上的点与实数—一对应,扩展为平面上的点与复数—一对应。高斯不仅把复数看作平面上的点,而且还看作是一种向量,并利用复数与向量之间—一对应的关系,阐述了复数的几何加法与乘法。至此,复数理论才比较完整和系统地建立起来了。
经过许多数学家长期不懈的努力,深刻探讨并发展了复数理论,才使得在数学领域游荡了200年的幽灵——虚数揭去了神秘的面纱,显现出它的本来面目,原来虚数不虚呵。虚数成为了数系大家庭中一员,从而实数集才扩充到了复数集。
随着科学和技术的进步,复数理论已越来越显出它的重要性,它不但对于数学本身的发展有着极其重要的意义,而且为证明机翼上升力的基本定理起到了重要作用,并在解决堤坝渗水的问题中显示了它的威力,也为建立巨大水电站提供了重要的理论依据。
从记数法到复数域:数系理论的历史发展
作者:纪志刚
摘 要:数系理论的历史发展表明,数的概念的每一次扩张都标志着数学的进步,但是这种进步并不是按照数学教科书的逻辑步骤展开的。希腊人关于无理数的发现暴露出有理数系的缺陷,而实数系的完备性一直要到19世纪才得以完成。负数早在《九章算术》中就已被中国数学家所认识,然而,15世纪的欧洲人仍然不愿意承认负数的意义。“四元数”的发明,打开了通向抽象代数的大门,同时也宣告在保持传统运算定律的意义下,复数是数系扩张的终点。人类发明的记数法并没有束缚自己的想象力,中国古代“数穷则变”的思想对于当代数学哲学仍具有积极的意义。
引 言
数,是数学中的基本概念,也是人类文明的重要组成部分。数的概念的每一次扩充都标志着数学的巨大飞跃。一个时代人们对于数的认识与应用,以及数系理论的完善程度,反映了当时数学发展的水平。今天,我们所应用的数系,已经构造的如此完备和缜密,以致于在科学技术和社会生活的一切领域中,它都成为基本的语言和不可或缺的工具。在我们得心应手地享用这份人类文明的共同财富时,是否想到在数系形成和发展的历史过程中,人类的智慧所经历的曲折和艰辛呢?
一、 记数法、位置制和零
人类在进化的蒙昧时期,就具有了一种“识数”的才能,心理学家称这种才能为“数觉”(perception of number)。动物行为学家则认为,这种“数觉”并非为人类所独有。人类智慧的卓越之处在于他们发明了种种记数方法。《周易·系辞下》记载“上古结绳而治,后世圣人,易之以书契”。东汉郑玄称:“事大,大结其绳;事小,小结其绳。结之多少,随物众寡”。以结绳和书契记数的方法实际上遍及世界各地,如希腊、波斯、罗马、巴勒斯坦、伊斯兰和中美洲国家都有文献记载和实物标本。直到1826年,英国财政部才决定停止采用符契作为法定记数器。随着人类社会的进步,数的语言也在不断发展和完善。数系发展的第一个里程碑出现了:位置制记数法。所谓位置制记数法,就是运用少量的符号,通过它们不同个数的排列,以表示不同的数。引起历史学家、数学史家兴趣的是,在自然环境和社会条件影响下,不同的文明创造了迥然不同的记数方法。如巴比伦的楔形数字系统、埃及象形数字系统、希腊人字母数字系统、玛雅数字系统、印度—阿拉伯数字系统和中国的算筹记数系统。
最早发展的一类数系应该是简单分群数系(simple grouping system),如在公元前3400年埃及象形文字中就有实例,它是10进的,但却不是位置的。在公元前3000到2000年之间,巴比伦人发展了60进位的定位数系(positional numeral system),它采用了位置制,却不是10进的。而最重要和最美妙的记数法则是10进位位置制记数法。
法国著名数学家拉普拉斯(Laplace,1749 – 1827)曾经写道:
用十个记号来表示一切的数,每个记号不但有绝对的值,而且有位置的值,这种巧妙的方法出自印度。这是一个深远而又重要的思想,它今天看来如此简单,以致我们忽视了它的真正伟绩。但恰恰是它的简单性以及对一切计算都提供了极大的方便,才使我们的算术在一切有用的发明中列在首位;而当我们想到它竟逃过了古代最伟大的两位人物阿基米德和阿波罗尼斯的天才思想的关注时,我们更感到这成就的伟大了。
拉普拉斯的这段评论十分精彩,只可惜他张冠李戴,把这项发明归之于印度。现已有充分而确凿的史料证明,10进位位置制记数法最先产生于中国。这一点也为西方的一些数学史家所主张。李约瑟就曾指出“在西方后来所习见的‘印度数字’的背后,位置制已在中国存在了两千年。”不过,10进位位置制记数法的产生不能单纯地归结为天才的智慧。记数法的进步是与计算工具的改进相联系的。研究表明,10进位位置制记数之产生于中国,是与算筹的使用与筹算制度的演进分不开的。
“0”作为记数法中的空位,在位置制记数的文明中是不可缺少的。早期的巴比伦楔形文字和宋代以前的中国筹算记数法,都是留出空位而没有符号。印度人起初也是用空位表示零,后来记成点号“· ”,最后发展为圈号。印度数码在公元8世纪传入阿拉伯国家。13世纪初,意大利的商人斐波那契(Leonado Fibonacci, 1175 - 1250)编著《算经》(Liber Abacci,1202),把包括零号在内完整的印度数码介绍到了欧洲。印度数码和10进位位置制记数法被欧洲人普遍接受后,在欧洲的科学和文明的进步中扮演了重要的角色。
二、大数记法
古代希腊人曾经提出一个问题:他们认为世界上的沙子是无穷的,即使不是无穷,也没有一个可以写出来的数超过沙子的数。阿基米德(Archimedes,BC287 - 212)的回答是:不。在《数沙术》中,阿基米德以万(myriad)为基础,建立新的记数法,使得任何大的数都能表示出来。他的做法是:从1起到1亿(原文是万万,myriad myriads, 这里按照中文的习惯改称为亿)叫做第1级数;以亿(108)为第2 级数的单位,从亿到亿亿(108)2叫做第2级数;在以亿亿为单位,直到亿亿亿(108)3叫做第3级数。直到第1亿级数的最后一数亿亿 。阿基米德算出充满宇宙的沙子的数目不过是1051,即使扩充到“恒星宇宙”,即以太阳到恒星的距离为半径的天球,也不过只能容纳1063个沙粒!
同样的问题也出现在中国古代。汉代以前,数皆10进,以10万位亿。韦昭解《国语·郑语》第十六:“计亿事,材兆物,收经入,行垓极”。注称“计,算也;材,裁也。贾唐说皆以万万为亿,郑后司农云:十万曰亿,十亿曰兆,从古数也。”《数术记遗》中则详细记载了对大数的一整套命名和三种进位方法。《数术记遗》称:
黄帝为法,数有十等,及其用也,乃有三焉。十等者亿、兆、京、垓、秭、壤、沟、涧、正、载;三等者,谓上、中、下也。其下数者。十十变之,若言十万曰亿,十亿曰兆,十兆曰京也。中数者,万万变之,若言万万曰亿、万万亿曰兆,万万兆曰京。上数者,数穷则变,若言万万曰亿,亿亿曰兆,兆兆曰京也。从亿至载,终于大衍。
《数术记遗》中的“大数之法”的数学意义并不仅仅在于它构造了三种记数方法,更为重要的是它揭示了人们对数的认识从有限走向无限的艰难历程。客观的需要和数学的发展都促使人们去认识和把握越来越大的数。起初,对一些较大的数,人们还可以理解它,还能够利用已有的记数单位去表示它。但是,随着人们认识的发展,这些大数也在迅速的扩张,原有的记数单位难以为用。人们不禁要问:
数有穷乎?
这是数系发展中的需要回答的重大命题。《数术记遗》中记载的徐岳和他的老师刘洪的对话,精彩的阐明了“数穷则变”的深刻道理:
徐岳问曰:数有穷乎?
会稽(刘洪)答曰:吾曾游天目山中,见有隐者,世莫知其名,号曰天目先生,余亦以此意问之。先生曰:世人言三不能比两,乃云捐闷与四维。数不识三,妄谈知十。不辨积微之为量,讵晓百亿于大千?黄帝为法,数有十等。……从亿至载,终于大衍。
会稽问曰:先生之言,上数者数穷则变,既云终于大衍,大衍有限,此何得无穷?
先生答曰:数之为用,言重则变,以小兼大,又加循环。循环之理,且有穷乎!
天目先生的做法是借助“以小兼大”的“循环之理”,以有限来认识无限,而指引这一途径的重要思想是“言重则变”。即便是今日,“数穷则变”这一朴素的辩证思维所蕴涵的深邃哲理仍值得人们深思。
三、 有理数系
位置制记数法的出现,标志着人类掌握的数的语言,已从少量的文字个体,发展到了一个具有完善运算规则的数系。人类第一个认识的数系,就是常说的“自然数系”。但是,随着人类认识的发展,自然数系的缺陷也就逐渐显露出来。首先,自然数系是一个离散的、而不是稠密的数系[2] ,因此,作为量的表征,它只能限于去表示一个单位量的整数倍,而无法表示它的部分。同时,作为运算的手段,在自然数系中只能施行加法和乘法,而不能自由地施行它们的逆运算。这些缺陷,由于分数和负数的出现而得以弥补。
有趣的是这些分数也都带有强烈的地域特征。巴比伦的分数是60进位的,埃及采用的是单分数(unit fraction),阿拉伯的分数更加复杂:单分数、主分数和复合分数。这种繁复的分数表示必然导致分数运算方法的繁杂,所以欧洲分数理论长期停滞不前,直到15世纪以后才逐步形成现代的分数算法。与之形成鲜明对照的是中国古代在分数理论上的卓越贡献。
原始的分数概念来源于对量的分割。如《说文·八部》对“分”的解释:“分,别也。从八从刀,刀以分别物也。”但是,《九章算术》中的分数是从除法运算引入的。其“合分术”有云:“实如法而一。不满法者,以法命之。”这句话的今译是:被除数除以除数。如果不能除尽,便定义了一个分数。中国古代分数理论的高明之处是它借助于“齐同术”把握住了分数算法的精髓:通分。刘徽在《九章算术注》中所言:
众分错杂,非细不会。乘而散之,所以通之。通之则可并也。凡母互乘子谓之齐,群母相乘谓之同。同者,相与通同共一母也。齐者,子与母齐,势不可失本数也。
有了齐同术,就可将分数化异类为同类,变相违为相通。刘徽深得其中奥秘,称:“然则齐同之术要矣。错综度数,动之斯谐,其犹佩?解结,无往而不理焉。乘以散之,约以聚之,齐同以通之,此其算之纲纪乎。”
容易证明,分数系是一个稠密的数系,它对于加、乘、除三种运算是封闭的。为了使得减法运算在数系内也同行无阻,负数的出现就是必然的了。盈余与不足、收入与支出、增加与减少是负数概念在生活中的实例,教科书在向学生讲授负数是也多循此途。这就产生一种误解:似乎人类正是从这种具有相反意义的量的认识而引进了负数的。历史的事实表明:负数之所以最早为中算家所引进,这是由中国古代传统数学中,算法高度发达和筹算机械化的特点所决定的。负数的概念和算法首先出现在《九章算术》“方程”章,因为对“方程”进行两行之间的加减消元时,就必须引入负数和建立正负数的运算法则。刘徽的注释深刻的阐明了这点:
今两算得失相反,要令正负以名之。正算赤,负算黑,否则以斜正为异。方程自有赤黑相取,左右数相推求之术。而其并减之势不得广通,故使赤黑相消夺之。……故赤黑相杂足以定上下之程,减益虽殊足以通左右之数,差实虽分足以应同异之率。然则其正无入负之,负无入正之,其率不妄也。
负数虽然通过阿拉伯人的著作传到了欧洲,但16世纪和17世纪的大多数数学家并不承认它们是数,或者即使承认了也并不认为它们是方程的根。如丘凯(Nicolas Chuquet ,1445-1500)和斯蒂费尔(Stifel ,1486-1567) 都把负数说成是荒谬的数,是“无稽之零下”。卡丹(Cardan,1501- 1576) 把负数作为方程的根,但认为它们是不可能的解,仅仅是一些记号;他把负根称作是虚有的。韦达(Vieta, 1540- 1630) 完全不要负数,巴斯卡(Pascal,1623- 1662) 则认为从0减去4纯粹是胡说。
负数是人类第一次越过正数域的范围,前此种种的经验,在负数面前全然无用。在数系发展的历史进程中,现实经验有时不仅无用,反而会成为一种阻碍。我们将会看到,负数并不是惟一的例子。
四、 实数理论的完善
无理数的发现,击碎了Pythagoras学派“万物皆数”的美梦。同时暴露出有理数系的缺陷:一条直线上的有理数尽管是“稠密”,但是它却漏出了许多“孔隙”,而且这种“孔隙”多的“不可胜数”。这样,古希腊人把有理数视为是连续衔接的那种算术连续统的设想,就彻底的破灭了。它的破灭,在以后两千多年时间内,对数学的发展,起到了深远的影响。不可通约的本质是什么?长期以来众说纷纭。两个不可通约量的比值也因其得不到正确的解释,而被认为是不可理喻的数。15世纪达芬奇(Leonardo da Vinci, 1452- 1519) 把它们称为是“无理的数”(irrational number),开普勒(J. Kepler, 1571- 1630)称它们是“不可名状”的数。这些“无理”而又“不可名状”的数,找到虽然在后来的运算中渐渐被使用,但是它们究竟是不是实实在在的数,却一直是个困扰人的问题。
中国古代数学在处理开方问题时,也不可避免地碰到无理根数。对于这种“开之不尽”的数,《九章算术》直截了当地“以面命之”予以接受,刘徽注释中的“求其微数”,实际上是用10进小数来无限逼近无理数。这本是一条完成实数系统的正确道路,只是刘徽的思想远远超越了他的时代,而未能引起后人的重视。不过,中国传统数学关注的是数量的计算,对数的本质并没有太大的兴趣。(李)而善于究根问底的希腊人就无法迈过这道坎了。既然不能克服它,那就只好回避它。此后的希腊数学家,如欧多克斯(Eudoxus)、欧几里得(Euclid)在他们的几何学里,都严格避免把数与几何量等同起来。欧多克斯的比例论(见《几何原本》第5卷),使几何学在逻辑上绕过了不可公度的障碍,但就在这以后的漫长时期中,形成了几何与算术的显著分离。
17、18世纪微积分的发展几乎吸引了所有数学家的注意力,恰恰是人们对微积分基础的关注,使得实数域的连续性问题再次突显出来。因为,微积分是建立在极限运算基础上的变量数学,而极限运算,需要一个封闭的数域。无理数正是实数域连续性的关键。
无理数是什么?法国数学家柯西(A.Cauchy,1789- 1875)给出了回答:无理数是有理数序列的极限。然而按照柯西的极限定义,所谓有理数序列的极限,意即预先存在一个确定的数,使它与序列中各数的差值,当序列趋于无穷时,可以任意小。但是,这个预先存在的“数”,又从何而来呢?在柯西看来,有理序列的极限,似乎是先验地存在的。这表明,柯西尽管是那个时代大分析学家,但仍未能摆脱两千多年来以几何直觉为立论基础的传统观念的影响。
变量数学独立建造完备数域的历史任务,终于在19世纪后半叶,由维尔斯特拉斯(Weierstrass,1815- 1897)、戴德金(R.Dedekind1831- 1916)、康托(G.Cantor,1845- 1918)等人加以完成了。
1872年,是近代数学史上最值得纪念的一年。这一年,克莱因(F.Kline,1849- 1925)提出了著名的“埃尔朗根纲领”(Erlanger Programm),维尔斯特拉斯给出了处处连续但处处不可微函数的著名例子。也正是在这一年,实数的三大派理论:戴德金“分割”理论;康托的“基本序列”理论,以及维尔斯特拉斯的“有界单调序列”理论,同时在德国出现了。
努力建立实数的目的,是为了给出一个形式化的逻辑定义,它既不依赖几何的含义,又避免用极限来定义无理数的逻辑错误。有了这些定义做基础,微积分中关于极限的基本定理的推导,才不会有理论上的循环。导数和积分从而可以直接在这些定义上建立起来,免去任何与感性认识联系的性质。几何概念是不能给出充分明白和精确的,这在微积分发展的漫长岁月的过程中已经被证明。因此,必要的严格性只有通过数的概念,并且在割断数的概念与几何量观念的联系之后才能完全达到。这里,戴德金的工作受到了崇高的评价,这是因为,由“戴德金分割”定义的实数,是完全不依赖于空间与时间直观的人类智慧的创造物。

⑨ 数学虚数在现实生活没有用,为什么要发明虚数别告诉

什么是虚数?
首先,假设有一根数轴,上面有两个反向的点:+1和-1;这根数轴的正向部分,可以绕原点旋转。显然,逆时针旋转180度,+1就会变成-1。这相当于两次逆时针旋转90度。
我们可以得到下面的关系式:
(+1) * (逆时针旋转90度) * (逆时针旋转90度) = (-1)
如果把+1消去,这个式子就变为:
(逆时针旋转90度)^2 = (-1)
将"逆时针旋转90度"记为 i :
i^2 = (-1)
这个式子很眼熟,它就是虚数的定义公式。
所以,我们可以知道,虚数 i 就是逆时针旋转90度,i 不是一个数,而是一个旋转量。

⑩ 数学虚数存在吗

很多东西未必有用 很多东西未必现在有用 理论的学习是枯燥乏味的 但是在学完了之后的应用会很简单

看到了补充……

关键是 虚数是工具 目前的教育 是要在掌握工具之后再讲应用 现在不知道就不知道吧 将来会用上的

具体的应用呢 比如在电学上就有很多应用 在分析交流电的时候就用上了

热点内容
美发店认证 发布:2021-03-16 21:43:38 浏览:443
物业纠纷原因 发布:2021-03-16 21:42:46 浏览:474
全国著名不孕不育医院 发布:2021-03-16 21:42:24 浏览:679
知名明星确诊 发布:2021-03-16 21:42:04 浏览:14
ipad大专有用吗 发布:2021-03-16 21:40:58 浏览:670
公务员协议班值得吗 发布:2021-03-16 21:40:00 浏览:21
知名书店品牌 发布:2021-03-16 21:39:09 浏览:949
q雷授权码在哪里买 发布:2021-03-16 21:38:44 浏览:852
图书天猫转让 发布:2021-03-16 21:38:26 浏览:707
宝宝水杯品牌 发布:2021-03-16 21:35:56 浏览:837