数学中的元和次是谁创造
Ⅰ 方程中的元和次代表什么
^元代表着方程中有几个未知数,次是代表方程中最高次数,比若说 一个方程 X+Y^2=1,则是二元一次方程。
方程表示两个数学式(如两个数、函数、量、运算)之间相等关系的一种等式,使等式成立的未知数的值称为“解”或“根”。求方程的解的过程称为“解方程”。
通过方程求解可以免去逆向思考的不易,直接正向列出含有欲求解的量的等式即可。方程具有多种形式,如一元一次方程、二元一次方程、一元二次方程等等,还可组成方程组求解多个未知数。
(1)数学中的元和次是谁创造扩展阅读:
微分方程
微分方程将一些函数与其导数相关联的数学方程。在应用中,函数通常表示物理量,衍生物表示其变化率,方程定义了两者之间的关系。因为这种关系是非常常见的,微分方程在包括工程,物理,经济学和生物学在内的许多学科中起着突出的作用。
在纯数学中,微分方程从几个不同的角度进行研究,主要涉及到它们的解 - 满足方程的函数集。只有最简单的微分方程可以通过显式公式求解;然而,可以确定给定微分方程的解的一些性质而不找到其确切形式。
如果解决方案的自包含公式不可用,则可以使用计算机数值近似解决方案。动力系统理论强调了微分方程描述的系统的定性分析,而已经开发了许多数值方法来确定具有给定精确度的解决方案。
Ⅱ 数学中的“元”、“次”、“根”是康熙命名的吗
是的,康熙是我国历史上数学水平最高的一位帝王。他天资聪慧,十分热爱数学,14岁起跟着从比利时来华的传教士南怀仁学习数学。
由于南怀仁的汉语和满语水平十分有限,平时的日常会话还能勉强应付,但在教授严谨、高深的数学知识时,就不能很好地表述清楚,使得康熙学得不太轻松,经常被弄得晕头转向。
在学习方程时,南怀仁讲授的句子冗长,加之吐词不清楚,康熙学得很吃力。怎样才能让老师讲得轻松一点呢?经过深思熟虑后,康熙向老师建议,将未知数用“元”来翻译代替,最高次项的次数翻译成“次”(特指整式方程),使方程左右两边相等的未知数的值用“根”(或“解”)来代替……。
(2)数学中的元和次是谁创造扩展阅读
方程F(x)的根是指满足F(x)=0的x的一切取值。一元二次方程根和解不同,根可以是重根,解一定不同,一元二次方程若有2个不同根,又称有2个不同解。
一元方程中方程的解可能受到某些实际条件的限制,如:一道关于每天生产多少零件的应用题的函数符合²-10x-24=0 此方程的根:x=12,x2=-2,虽然x=-2符合方程的根的条件,但考虑实际应用,零件生产不可能是负数,所以,此时x2=-2不是这个问题的解了,只能说是方程的根。
Ⅲ 请问初一数学的元和次是什么概念啊系数又是什么啊,底数和指数又是什么概念啊
元是未知数,常用x和y表示,如x+y=45,就是个二元方程式
次是未知数的次数,如x²,就是个二次式
系数是未知数前面的数字,如5x中,5就是系数
底数和指数是用于指数函数和对数函数上的,下方的数字为底数,上方的为指数,如:log3,6(本来3在下,6在上,但打不出来)3为底数,6为指数.
Ⅳ 数学方程的元和次分别表示什么
数学方程的元是指:方程中含有不同未知数的个数;次数是指未知数的最高指数,最高指数是几,就是几次。
如:x的平方+y的3次方+z=28,就是一个三元3次方程。
必须含有未知数等式的等式才叫方程。等式不一定是方程,方程一定是等式。
(4)数学中的元和次是谁创造扩展阅读:
解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。一元二次方程有四种解法:直接开平方法;配方法;公式法;分解因式法。
一般解一元二次方程,最常用的方法还是因式分解法,在应用因式分解法时,一般要先将方程写成一般形式,同时应使二次项系数化为正数。
Ⅳ 在初中数学中,“一元一次”元和次各是什么意思
元指未知数的个数,有几个未知数就叫几元,次指的是未知数或未知项的指数
Ⅵ 离散数学中最小元与极小元有什么不同
最小元:假设a为最小元,则在集合A中,任取元素x,都有aRx.
极小元:假设a为极小元,则任取与a具有关系R的元素x,都有aRx.
Ⅶ 数学题中单位克/元和元/克的区别是
克/元表示每元多少克。如3克/元表示每元3克。
元/克表示每克多少元。如3元/克表示每克3元.
Ⅷ 数学方程式中的元和次是谁创立的
数学方程式中的元和次是中国清朝时期的康熙皇帝创立的。
康熙皇帝是中国历史上声名显赫,又有远大抱负,聪明好学的一位皇帝。他除了其文治武功之外 ,还十分爱好数学,曾拜比利时的南怀仁等传教士为师,学习数学 、天文、地理以及拉丁文等,康熙皇帝虽然聪颖过人,但是听外籍教师讲课也有困难,因为南怀仁等人的汉语和满语水平有限,日常会话勉强对付,但要将严谨而高深的科学知识表达出来就显得力不从心了。而当时课本多是外文,即使中译本也是半通不通的。这样,学习中就必然有许多精 力被消耗在语言沟通上,进度不快 。
不过,康熙学习很刻苦,也很有耐心,不懂就请教,直至真正弄懂为止。南怀仁在讲方程时,句子冗长,吐音又很不清楚,康熙的脑子常常被搞得晕晕糊糊的,怎样才能让老师讲得好懂呢?一阵冥思苦想后,一个妙法突然冒出来。他向南怀仁建议 ,将未知数翻译为“元”,最高次数翻译为“次”(限整式方程),使方程左右两边相等的未知数的值翻译为“根”(解)⋯⋯南怀仁用笔认真地记了下来 ,随即用这些新创术语换下自己原先使用的繁琐词语 :“求二‘元’一‘次’方程的‘根 ’(解 )⋯⋯“如此一来,果然简单了很多,而且还可以提高教学效率,南怀仁惊疑地盯着康熙,愣怔了一会儿,突然按照西方最亲切的礼节一下子将康熙紧紧抱住:“我读书和教书几十年,无论是老师还是学生,还从来没见过一个像您这样肯动脑筋的人 !”
正因为康熙创造的这几个数学术语科学而简洁,十分便于理解和记忆,因此一直延用到今天 。
Ⅸ 离散数学里单位元与零元有什么区别
单位元,就是满足任意元素与之相乘,结果还是该任意元素
幺元,就是单位元。
零元,就是满足任意元素与之相乘,结果还是零元