当前位置:首页 » 新型创造 » 创造并最先使用语言的数学家是

创造并最先使用语言的数学家是

发布时间: 2020-11-28 15:05:14

① 数理逻辑最初是由哪位科学家提出的

数理逻辑是以符号语言为主要工具语言的逻辑,也被称为符号逻辑.
其提出可以追溯到17世纪后期到18世纪早期的著名科学家和哲学家“莱布尼茨(Leibniz, 1646-1716)”,他的代表作是《人类理智新论》.他区分了理性真理和事实真理,前者必然为真,后者则或然为真,一切必然真理都是分析的.他试图建立一种分析的真理体系.莱布尼茨曾设想过创造一种“通用的科学语言”,可以把推理过程象数学一样利用公式来进行计算,从而得出保真的结论.他的思想成为数理逻辑部分内容的萌芽,从这个意义上讲,莱布尼茨可以说是数理逻辑的先驱.
而数理逻辑的实际开创者应该说是英国哲学家和数学家布尔.1847年,布尔发表了《逻辑的数学分析》,建立了“布尔代数”,并创造一套符号系统,利用符号来表示逻辑中的各种概念.布尔建立了一系列的运算法则,利用代数的方法研究逻辑问题,初步奠定了数理逻辑的基础.
十九世纪末二十世纪初,数理逻辑有了比较大的发展,1884年,德国数学家弗雷格出版了《算术基础》一书,在书中引入量词的符号,使得数理逻辑的符号系统更加完备.对建立这门学科做出贡献的,还有美国人皮尔斯,他也在著作中引入了逻辑符号.从而使现代数理逻辑最基本的理论基础逐步形成,成为一门独立的学科.

② 乘号是三百年前哪一位数学家最先使用的

英国数学家奥屈特于1631年提出用“×”表示相乘。另一乘号“·”是数学家赫锐奥特首创的。

③ 数学家们为研究古希腊三大尺规作图难题花费了两千年时间,( )创造并最先使用( )的超越性

这个不会啊。

④ 编程语言是谁发明

我也抄一下。

奥古斯塔·阿达·金,勒芙蕾丝伯爵夫人(Augusta Ada King, Countess of Lovelace,1815年12月10日-1852年11月27日),原名奥古斯塔·阿达·拜伦(Augusta Ada Byron),通称阿达·洛芙莱斯(Ada Lovelace),是著名英国诗人拜伦之女,数学家。计算机程序创始人,建立了循环和子程序概念。
为计算程序拟定“算法”,写作的第一份“程序设计流程图”,被珍视为“第一位给计算机写程序的人”。为了纪念阿达·奥古斯塔对现代电脑与软件工程所产生的重大影响,美国国防部将耗费巨资、历时近20年研制成功的高级程序语言命名为Ada语言,它被公认为是第四代计算机语言的主要代表。

在1842年,人称“数字女王”的阿达·洛芙莱斯(Ada Lovelace)编写了历史上首款电脑程序。
在1834年,阿达的朋友——英国数学家、发明家兼机械工程师查尔斯·巴贝其(Charles Babbage)——发明了一台分析机;阿达则致力于为该分析机编写算法,并于1843 年公布了世界上第一套算法。
巴贝其分析机后来被认为是最早期的计算机雏形,而阿达的算法则被认为是最早的计算机程序和软件。
1852年,阿达为了治疗子宫颈癌,却因此死于失血过多,得年36岁。无独有偶,她与她父亲拜伦死于相同年龄,一样死于治疗中的失血过多。她留下了两个儿子与一位女儿—安妮·布兰特贵女。
依她的遗言,阿达葬于诺丁汉哈克诺的圣 玛丽亚·抹大拉教堂,长眠在父亲的身旁。

在1842年与1843年其间,阿达花了9个月的时间翻译意大利数学家路易吉·米那比亚对巴贝奇最新的计算机设计书(即分析机概论)所留下的备忘录。在这部译文里,她附加许多注记,内容详细说明用计算机进行伯努利数的运算方式,而被认为是世界上第一个电脑程式;因此,阿达也被认为是世界上第一位程式设计师。巴贝奇在他所著的《经过哲学家人生》(Passages from the Life of a Philosopher, 1846)里留有下面的述叙:

伦敦科学馆分析机复制品
“我认为她为米那比亚的备忘录增加许多注记,并加入了一些想法。虽然这些想法是由我们一起讨论出来的,但是最后被写进注记里的想法确确实实是她自己的构想。我将许多代数运算的问题交给她处理,这些工作也与伯努利数的运算相关。在她所送回给我的文件,更修正了我先前在程序里的重大错误。”
阿达的文章创造出许多巴贝奇也未曾提到的新构想,比如阿达曾经预言道:“这个机器未来可以用来排版、编曲或是各种更复杂的用途。”

她死后一百年,于1953年,阿达之前对查尔斯·巴贝奇的《分析机概论》所留下的笔记被重新公布,并被公认对现代计算机与软件工程造成了重大影响。[2]
在1980年12月10日,美国国防部制作了一个新的高级计算机编程语言——Ada,以纪念阿达·洛芙莱斯。
在微软的Wins产品里也可以找到阿达的全息图标签。
英国计算机公会每年都颁发以阿达命名的软件工程创新大奖。

⑤ 是谁发明并先使用英语的

英语不是谁发明的.
英国原住民说的好象是一种哥特语,据说爱尔兰语就是其后裔.后来大陆的日尔曼人入侵,带去了一种日尔曼语,就是古英语的前身了.古英语再演变为现代英语.
楼上的说的是"英文",而楼主问的是"英语"啊。
楼上的说法还应该补充一下____
希腊人发明了元音字母.
拉丁字母是由希腊字母演变而来的.
英文字母采用的是拉丁字母.

⑥ 常用的数学符号是谁创造出来的

人们会计算加法、减法、乘法和除法已经有好几千年的历史了。

但是使用+、-、×、÷等数学符号却是近几百年的事。那么,这些符号是由谁创造出来的呢?

加、减号(+、-),是15世纪德国数学家魏德曼首创的。他在横线上加一竖,表示增加、合并的意思;在加号上去掉一竖表示减少、拿去的意思。

乘号(×),是17世纪英国数学家欧德莱最先使用的。因为乘法与加法有一定的联系,所以他把加号斜着写表示相乘。后来,德国数学家莱布尼兹认为“×”易与字母“x”混淆,主张用“·”号,至今“×”与“·”并用。

除号(÷),是17世纪瑞士数学家雷恩首先使用的。他用一道横线把两个圆点分开,表示分解的意思。后来莱布尼兹主张用“:”作除号,与当时流行的比号一致。现在有些国家的除号和比号都用“:”表示。

等号(=),是16世纪英国学者列科尔德创造的,他用两条平行而又相等的直线来表示两数相等。

中括号()和大括号(),是16世纪英国数学家魏治德创造的。

大于号(>)和小于号(<),是17世纪的数学家哈里奥特创立的。

这些数学符号既简单,又方便。使用它们,是数学上的一大进步。

⑦ 数学是怎样创造出来的

一个人从小学到大学都离不开数学课,就连现在所有大学里的文科专业也开设了高等数学课,甚至幼儿园的小朋友都要学习从计数开始的数学。从人类久远的古代计数所产生的自然数和从具有某种特定形状的物体所产生的点、线、面等,就已经是经过人们高度抽象化了的概念。

数学,这门古老而又常新的科学,已大步迈进了21世纪。数学科学的巨大发展,比以往任何时代都更牢固地确立了它作为整个学科技术的基础地位。数学正突破传统的应用范围向几乎所有的人类知识领域渗透,并越来越直接地为人类物质生产与日常生活作出贡献。同时,数学作为一种文化,已成为人类文明进步的标志。因此,对于当今社会每一个文化人而言,不论他从事何种职业,都需要学习数学、了解数学和运用数学。现代社会对数学的这种需要,在未来无疑将更加与日俱增。

数学是怎样创造出来的?能够做出数学命题和系统的头脑是怎样的头脑?几何学家或代数学家的智力活动比之音乐家、诗人、画家和棋手又怎么样?在数学的创造中哪些是关键因素?是直觉还是敏锐感?是计算机似的精确性吗?是特强的记忆力吗?还是追随复杂的逻辑次序时可敬畏的技巧?或者是极高度的用心集中吗?

数学的思考模式,就是把具体的事物抽象化,把抽象的事物公式化,把复杂的事物简单化,做任何事都首先能有一个提纲挈领的全盘思考然后再去做,效果肯定是事半功倍的。这既是成功人士的思维习惯,也是快乐人生的思维习惯。

陶哲轩是个天才,他6岁时在家看手册自学了计算机BASIC语言并开始为数学问题编程;8岁时,他写的“斐波那契”程序的导言就因为“太好玩”而被数学家克莱门特完全引用;20岁时,他获得普林斯顿大学博士学位;24岁被洛杉矶加州大学聘为正教授;31岁获数学领域的世界最高奖。

童年的陶哲轩始终是活泼的、有创造力的、有时爱做恶作剧的孩子,父母总是给他时间让他玩,让他有时间想自己的东西,因为他们担心不这样做,儿子的创造力就会慢慢枯竭。

他曾谦虚地说:“我到现在也没摸清作文的窍门,我比较喜欢明确一些定理规则然后去做事。”他童年时写《我的家庭》时,他就把家里从一个房间写到另一个房间,记下一些细节,并排了一个目录。不理解他的人会认为——他真的不会写作,理解他的人会知道——他已经掌握了用数学模式思考所有问题的能力,这就是数学家与普通人的思维方式的区别。

数学是人创造出的最简单也是最系统的学科,小到生活里的各种计算,大到对国家的科技贡献。也许你会认为,科学与艺术、数学与哲学,这些学科的分界越往上越模糊,但你要记住:所有的知识到了最后都是相同的,而他们一开始的基础也是一样的,那就是用最准确的方式描述出事物的特征和规律。而数学就是让我们学习找到这种特征和规律的方法,即用数学的模式去思考、去判断、去解决,由繁到简、由难到易,这不仅是思维的飞越,更是能力的飞越。一个能够体验“我思故我乐”的孩子,他的人生也一定是不同寻常的!

数学创造力

⑧ 中国历史上第一个数学家是谁

刘徽(约公元225年—295年)是魏晋期间伟大的数学家,中国古典数学理论的奠基人之一。是中国数学史上一个非常伟大的数学家,他的杰作《九章算术注》和《海岛算经》,是中国最宝贵的数学遗产。刘徽思想敏捷,方法灵活,既提倡推理又主张直观.他是中国最早明确主张用逻辑推理的方式来论证数学命题的人.刘徽的一生是为数学刻苦探求的一生.他虽然地位低下,但人格高尚.他不是沽名钓誉的庸人,而是学而不厌的伟人,他给我们中华民族留下了宝贵的财富。

⑨ 谁发明了那些经典的编程语言

《软件故事:谁发明了那些经典的编程语言》介绍了多种语言和软件的起源以及促进软件行业发展的重大成就,以传记体讲述了埋没于历史洪流却起到了关键作用的编程人员及其贡献,包括“存储式计算”早期出现的女性软件先驱的故事。
本书内容主要包括:约翰·
巴克斯发明Fortran
语言、约翰·
麦卡锡设计Lisp语言、“COBOL
之母”葛丽丝·
霍普等人创建COBOL
语言、肯·
汤普森与丹尼斯·
里奇开发Unix
操作系统和C
语言、托马斯·
库尔兹与约翰·
凯默尼开发basic
语言、本贾尼·
斯特劳斯特卢普开发C++、“Word
之父”查尔斯·
西蒙尼研发Word、阿兰·
凯伊设计Smalltalk
语言、安迪·赫兹菲尔德等研发Macintosh、钱柏林等创建SQL
语言、詹姆斯·高斯林发明Java,等等。
《软件故事:谁发明了那些经典的编程语言》适合计算机相关从业人员及对软件行业感兴趣的读者参考阅读。

⑩ 数学家有哪些发明了什么对世界有多大成就

1、牛顿:微积分的创建、万有引力。2、欧拉:无穷小分析引论》一书便是他划时代的代表作,当时数学家们称他为“分析学的化身”。另外,欧拉还创设了许多数学符号,一直使用至今,如π,i,e,sin,cos,tg,Δx,Σ,f(x)等。而哥德巴赫猜想也是在他与哥德巴赫的通信中首先提出来的。欧拉还首先完成了月球绕地球运动的精确理论,创立了分析力学、刚体力学等力学学科,深化了望远镜、显微镜的设计计算理论等等。4、伽罗瓦:首次引入了“群”的概念,(寄给大数学家柯西审阅,可惜柯西轻视该文,未认真审阅,致使该理论推迟了50年)18岁时,再次寄出,这次寄给大数学家傅立叶,可惜傅立叶病死,未能审阅。19岁时,第三次寄出,这次寄给了大数学家泊松,但是泊松最终给的批语是“完全无法理解”。这些失误致使“群伦”这一数学最重要的分支迟到了50年的时间。5、亨利·庞加莱,庞加莱一生发表的科学论文约500篇、科学著作约30部,几乎涉及到数学的所有领域以及理论物理、天体物理等的许多重要领域。6、希尔伯特。希尔伯特的研究涉及现代数学的许多领域,如不变量理论、代数数论、几何基础、积分方程和物理学的公理化、数学基础和数理逻辑等。希尔伯特是对二十世纪数学有深刻影响的数学家之一,对他提出的23个问题,似乎至今仍在促进现代数学的研究和发展。大数学家韦尔(H.Weyl)在希尔伯特去世时的悼词中曾说:“希尔伯特就像穿杂色衣服的风笛手,他那甜蜜的笛声诱惑了如此众多的老鼠,跟着他跳进了数学的深河。”7、陈省身:陈省身开创并领导着整体微分几何、纤维丛微分几何、“陈省身示性类”等领域的研究,他是有史以来唯一获得世界数学界最高荣誉“沃尔夫奖”的华人,被称为“当今最伟大的数学家”,被国际数学界尊为“微分几何之父”。
国际著名数学大师,沃尔夫数学奖得主,陈省身
1931年入清华大学研究院,1934军获硕士学位.1934年去汉堡大学从Blaschke学习.1937年回国任西南联合大学教授.1943年到1945年任普林斯顿高等研究所研究员.1949年初赴美,旋任芝加哥大学教授.1960年到加州大学伯克利分校任教授,1979年退休成为名誉教授,仍继续任教到1984年.1981年到1984年任新建的伯克利数学研究所所长,其后任名誉所长。陈省身的主要工作领域是微分几何学及其相关分支.还在积分几何,射影微分几何,极小子流形,网几何学,全曲率与各种浸入理论,外微分形式与偏微分方程等诸多领域有开拓性的贡献.陈省身本有极多荣誉,包括中央研究院院士(1948).美国国家科学院院士(1961)及国家科学奖章(1975),伦敦皇家学会国外会员(1985),法国科学院国外院士’(1989),中国科学院国外院士等。荣获1983/1984年度Wolf奖,及1983年度美国科学会Steele奖中的终身成就奖.
2.享有国际盛誉的大数学家,新中国数学事业发展的重要奠基人 华罗庚
华罗庚是一位人生经历传奇的数学家,早年辍学,1930年因在《科学》上发表了关于代数方程式解法的文章,受到熊庆来的重视,被邀到清华大学学习和工作,在杨武之指引下,开始了数论的研究。1936年,作为访问学者去英国剑桥大学工作。1938年回国,受聘为西南联合大学教授。1946年应美国普林斯顿高等研究所邀请任研究员,并在普林斯顿大学执教。1948年开始,他为伊大学教授。1950年回国,先后任清华大学教授,中国科学院数学研究所所长,数理化学部委员和学部副主任,中国科学技术大学数学系主任、副校长,中国科学院应用数学研究所所长,中国科学院副院长、主席团委员等职。还担任过多届中国数学会理事长。此外,华罗庚还是第一、二、三、四、五届全国人民代表大会常务委员会委员和中国人民政治协商会议第六届全国委员会副主席。华罗庚是在国际上享有盛誉的数学家,他的名字在美国施密斯松尼博物馆与芝加哥科技博物馆等著名博物馆中,与少数经典数学家列在一起。他被选为美国科学院国外院士,第三世界科学院院士,联邦德国巴伐利亚科学院院士。又被授予法国南锡大学、香港中文大学与美国伊利诺伊大学荣誉博士。华罗庚在解析数论、矩阵几何学、典型群、自守函数论、多复变函数论、偏微分方程、高维数值积分等广泛数学领域中都作出卓越贡献。由于华罗庚的重大贡献,有许多用他他的名字命名的定理、引理、不等式、算子与方法。他共发表专著与学术论文近三百篇。华罗庚还根据中国实情与国际潮流,倡导应用数学与计算机研制。他身体力行,亲自去二十七个省市普及应用数学方法长达二十年之久,为经济建设作出了重大贡献。
3.仅次于哥德尔的逻辑数学大师,王浩
1943年于西南联合大学数学系毕业。1945年于清华大学研究生院哲学部毕业。1948年获美国哈佛大学哲学博士学位。1950~1951年在瑞士联邦工学院数学研究所从事研究工作1951~1953年任哈佛大学助理教授。1954~1961年在英国牛津大学作第二套洛克讲座讲演,又任逻辑及数理哲学高级教职。1961~1967 年任哈佛大学教授。1967年后任美国洛克斐勒大学教授,主持逻辑研究室工作。1985年兼任中国北京大学名誉教授。1986年兼任中国清华大学名誉教授。50年代 初被选为美国国家科学院院士,后又被选为不列颠科学院外国院士,美籍华裔数学家、逻辑学家、计算机科学家、哲学家。
4.著名数学家力学家,美国科学院院士,林家翘
1937年毕业于清华大学物理系。1941年获加拿大多伦多大学硕士学位。1944年获美国加州理工学院博士学位。1953 年起先后担任美国麻省理工学院数学教授、学院教授、荣誉退休教授。 林家翘教授曾获:美国机械工程师学会Timoshenko奖,美国国家科学院应用数学和数值分析奖,美国物理学会流体力学奖。他是美国国家文理学院院士(1951),美国国家科学院院士(1962),台湾“中央研究院”院士(1960)。从40年代开始,林家翘教授在流体力学的流动稳定性和湍流理论方面的工作带动了整整一代人在这一领域的研究探索。从60年代开始,他进入天体物理的研究领域,开创了星系螺旋结构的密度波理论,并为国际所公认。1994年6月8日当选为首批中国科学院外籍士。
1.费尔马大定理,起源于三百多年前,挑战人类3个世纪,多次震惊全世界,耗尽人类众多最杰出大脑的精力,也让千千万万业余者痴迷。终于在1994年被安德鲁·怀尔斯攻克。古希腊的丢番图写过一本著名的“算术”,经历中世纪的愚昧黑暗到文艺复兴的时候,“算术”的残本重新被发现研究。
1637年,法国业余大数学家费尔马(Pierre de Fremat)在“算术”的关于勾股数问题的页边上,写下猜想:x^n+ y^n =z^n 是不可能的(这里n大于2;a,b,c,n都是非零整数)。此猜想后来就称为费尔马大定理。费尔马还写道“我对此有绝妙的证明,但此页边太窄写不下”。一般公认,他当时不可能有正确的证明。猜想提出后,经欧拉等数代天才努力,200年间只解决了n=3,4,5,7四种情形。1847年,库木尔创立“代数数论”这一现代重要学科,对许多n(例如100以内)证明了费尔马大定理,是一次大飞跃。
历史上费尔马大定理高潮迭起,传奇不断。其惊人的魅力,曾在最后时刻挽救自杀青年于不死。他就是德国的沃尔夫斯克勒,他后来为费尔马大定理设悬赏10万马克(相当于现在160万美元多),期限1908-2007年。无数人耗尽心力,空留浩叹。最现代的电脑加数学技巧,验证了400万以内的N,但这对最终证明无济于事。1983年德国的法尔廷斯证明了:对任一固定的n,最多只有有限多个a,b,c振动了世界,获得费尔兹奖(数学界最高奖)。
历史的新转机发生在1986年夏,贝克莱·瑞波特证明了:费尔马大定理包含在“谷山丰—志村五朗猜想 ” 之中。童年就痴迷于此的怀尔斯,闻此立刻潜心于顶楼书房7年,曲折卓绝,汇集了20世纪数论所有的突破性成果。终于在1993年6月23日剑桥大学牛顿研究所的“世纪演讲”最后,宣布证明了费尔马大定理。立刻震动世界,普天同庆。不幸的是,数月后逐渐发现此证明有漏洞,一时更成世界焦点。这个证明体系是千万个深奥数学推理连接成千个最现代的定理、事实和计算所组成的千百回转的逻辑网络,任何一环节的问题都会导致前功尽弃。怀尔斯绝境搏斗,毫无出路。1994年9月19日,星期一的早晨,怀尔斯在思维的闪电中突然找到了迷失的钥匙:解答原来就在废墟中!他热泪夺眶而出。怀尔斯的历史性长文“模椭圆曲线和费尔马大定理”1995年5月发表在美国《数学年刊》第142卷,实际占满了全卷,共五章,130页。1997年6月27日,怀尔斯获得沃尔夫斯克勒10万马克悬赏大奖。离截止期10年,圆了历史的梦。他还获得沃尔夫奖(1996.3),美国国家科学家院奖(1996.6),费尔兹特别奖(1998.8)。
2.四色问题的内容是:“任何一张地图只用四种颜色就能使具有共同边界的国家着上不同的颜色。”用数学语言表示,即“将平面任意地细分为不相重叠的区域,每一个区域总可以用1,2,3,4这四个数字之一来标记,而不会使相邻的两个区域得到相同的数字。”(右图)
这里所指的相邻区域,是指有一整段边界是公共的。如果两个区域只相遇于一点或有限多点,就不叫相邻的。因为用相同的颜色给它们着色不会引起混淆。
四色猜想的提出来自英国。1852年,毕业于伦敦大学的弗南西斯·格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家都被着上不同的颜色。”这个现象能不能从数学上加以严格证明呢?他和在大学读书的弟弟格里斯决心试一试。兄弟二人为证明这一问题而使用的稿纸已经堆了一大叠,可是研究工作没有进展。
1852年10月23日,他的弟弟就这个问题的证明请教了他的老师、著名数学家德·摩尔根,摩尔根也没有能找到解决这个问题的途径,于是写信向自己的好友、著名数学家汉密尔顿爵士请教。汉密尔顿接到摩尔根的信后,对四色问题进行论证。但直到1865年汉密尔顿逝世为止,问题也没有能够解决。
1872年,英国当时最著名的数学家凯利正式向伦敦数学学会提出了这个问题,于是四色猜想成了世界数学界关注的问题。世界上许多一流的数学家都纷纷参加了四色猜想的大会战。1878~1880年两年间,著名的律师兼数学家肯普和泰勒两人分别提交了证明四色猜想的论文,宣布证明了四色定理,大家都认为四色猜想从此也就解决了。
肯普的证明是这样的:首先指出如果没有一个国家包围其他国家,或没有三个以上的国家相遇于一点,这种地图就说是“正规的”(左图)。如为正规地图,否则为非正规地图(右图)。一张地图往往是由正规地图和非正规地图联系在一起,但非正规地图所需颜色种数一般不超过正规地图所需的颜色,如果有一张需要五种颜色的地图,那就是指它的正规地图是五色的,要证明四色猜想成立,只要证明不存在一张正规五色地图就足够了。
肯普是用归谬法来证明的,大意是如果有一张正规的五色地图,就会存在一张国数最少的“极小正规五色地图”,如果极小正规五色地图中有一个国家的邻国数少于六个,就会存在一张国数较少的正规地图仍为五色的,这样一来就不会有极小五色地图的国数,也就不存在正规五色地图了。这样肯普就认为他已经证明了“四色问题”,但是后来人们发现他错了。
不过肯普的证明阐明了两个重要的概念,对以后问题的解决提供了途径。第一个概念是“构形”。他证明了在每一张正规地图中至少有一国具有两个、三个、四个或五个邻国,不存在每个国家都有六个或更多个邻国的正规地图,也就是说,由两个邻国,三个邻国、四个或五个邻国组成的一组“构形”是不可避免的,每张地图至少含有这四种构形中的一个。
肯普提出的另一个概念是“可约”性。“可约”这个词的使用是来自肯普的论证。他证明了只要五色地图中有一国具有四个邻国,就会有国数减少的五色地图。自从引入“构形”,“可约”概念后,逐步发展了检查构形以决定是否可约的一些标准方法,能够寻求可约构形的不可避免组,是证明“四色问题”的重要依据。但要证明大的构形可约,需要检查大量的细节,这是相当复杂的。
11年后,即1890年,在牛津大学就读的年仅29岁的赫伍德以自己的精确计算指出了肯普在证明上的漏洞。他指出肯普说没有极小五色地图能有一国具有五个邻国的理由有破绽。不久,泰勒的证明也被人们否定了。人们发现他们实际上证明了一个较弱的命题——五色定理。就是说对地图着色,用五种颜色就够了。后来,越来越多的数学家虽然对此绞尽脑汁,但一无所获。于是,人们开始认识到,这个貌似容易的题目,其实是一个可与费马猜想相媲美的难题。
进入20世纪以来,科学家们对四色猜想的证明基本上是按照肯普的想法在进行。1913年,美国著名数学家、哈佛大学的伯克霍夫利用肯普的想法,结合自己新的设想;证明了某些大的构形可约。后来美国数学家富兰克林于1939年证明了22国以下的地图都可以用四色着色。1950年,有人从22国推进到35国。1960年,有人又证明了39国以下的地图可以只用四种颜色着色;随后又推进到了50国。看来这种推进仍然十分缓慢。
高速数字计算机的发明,促使更多数学家对“四色问题”的研究。从1936年就开始研究四色猜想的海克,公开宣称四色猜想可用寻找可约图形的不可避免组来证明。他的学生丢雷写了一个计算程序,海克不仅能用这程序产生的数据来证明构形可约,而且描绘可约构形的方法是从改造地图成为数学上称为“对偶”形着手。
他把每个国家的首都标出来,然后把相邻国家的首都用一条越过边界的铁路连接起来,除首都(称为顶点)及铁路(称为弧或边)外,擦掉其他所有的线,剩下的称为原图的对偶图。到了六十年代后期,海克引进一个类似于在电网络中移动电荷的方法来求构形的不可避免组。在海克的研究中第一次以颇不成熟的形式出现的“放电法”,这对以后关于不可避免组的研究是个关键,也是证明四色定理的中心要素。
电子计算机问世以后,由于演算速度迅速提高,加之人机对话的出现,大大加快了对四色猜想证明的进程。美国伊利诺大学哈肯在1970年着手改进“放电过程”,后与阿佩尔合作编制一个很好的程序。就在1976年6月,他们在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿判断,终于完成了四色定理的证明,轰动了世界。
这是一百多年来吸引许多数学家与数学爱好者的大事,当两位数学家将他们的研究成果发表的时候,当地的邮局在当天发出的所有邮件上都加盖了“四色足够”的特制邮戳,以庆祝这一难题获得解决。
“四色问题”的被证明仅解决了一个历时100多年的难题,而且成为数学史上一系列新思维的起点。在“四色问题”的研究过程中,不少新的数学理论随之产生,也发展了很多数学计算技巧。如将地图的着色问题化为图论问题,丰富了图论的内容。不仅如此,“四色问题”在有效地设计航空班机日程表,设计计算机的编码程序上都起到了推动作用。
不过不少数学家并不满足于计算机取得的成就,他们认为应该有一种简捷明快的书面证明方法。直到现在,仍由不少数学家和数学爱好者在寻找更简洁的证明方法。
3.史上和质数有关的数学猜想中,最著名的当然就是“哥德巴赫猜想”了。
1742年6月7日,德国数学家哥德巴赫在写给著名数学家欧拉的一封信中,提出了两个大胆的猜想:
一、任何不小于6的偶数,都是两个奇质数之和;
二、任何不小于9的奇数,都是三个奇质数之和。
这就是数学史上著名的“哥德巴赫猜想”。显然,第二个猜想是第一个猜想的推论。因此,只需在两个猜想中证明一个就足够了。
同年6月30日,欧拉在给哥德巴赫的回信中, 明确表示他深信哥德巴赫的这两个猜想都是正确的定理,但是欧拉当时还无法给出证明。由于欧拉是当时欧洲最伟大的数学家,他对哥德巴赫猜想的信心,影响到了整个欧洲乃至世界数学界。从那以后,许多数学家都跃跃欲试,甚至一生都致力于证明哥德巴赫猜想。可是直到19世纪末,哥德巴赫猜想的证明也没有任何进展。证明哥德巴赫猜想的难度,远远超出了人们的想象。有的数学家把哥德巴赫猜想比喻为“数学王冠上的明珠”。
我们从6=3+3、8=3+5、10=5+5、……、100=3+97=11+89=17+83、……这些具体的例子中,可以看出哥德巴赫猜想都是成立的。有人甚至逐一验证了3300万以内的所有偶数,竟然没有一个不符合哥德巴赫猜想的。20世纪,随着计算机技术的发展,数学家们发现哥德巴赫猜想对于更大的数依然成立。可是自然数是无限的,谁知道会不会在某一个足够大的偶数上,突然出现哥德巴赫猜想的反例呢?于是人们逐步改变了探究问题的方式。
1900年,20世纪最伟大的数学家希尔伯特,在国际数学会议上把“哥德巴赫猜想”列为23个数学难题之一。此后,20世纪的数学家们在世界范围内“联手”进攻“哥德巴赫猜想”堡垒,终于取得了辉煌的成果。
20世纪的数学家们研究哥德巴赫猜想所采用的主要方法,是筛法、圆法、密率法和三角和法等等高深的数学方法。解决这个猜想的思路,就像“缩小包围圈”一样,逐步逼近最后的结果。
1920年,挪威数学家布朗证明了定理“9+9”,由此划定了进攻“哥德巴赫猜想”的“大包围圈”。这个“9+9”是怎么回事呢?所谓“9+9”,翻译成数学语言就是:“任何一个足够大的偶数,都可以表示成其它两个数之和,而这两个数中的每个数,都是9个奇质数之积。” 从这个“9+9”开始,全世界的数学家集中力量“缩小包围圈”,当然最后的目标就是“1+1”了。
1924年,德国数学家雷德马赫证明了定理“7+7”。很快,“6+6”、“5+5”、“4+4”和“3+3”逐一被攻陷。1957年,我国数学家王元证明了“2+3”。1962年,中国数学家潘承洞证明了“1+5”,同年又和王元合作证明了“1+4”。1965年,苏联数学家证明了“1+3”。
1966年,我国著名数学家陈景润攻克了“1+2”,也就是:“任何一个足够大的偶数,都可以表示成两个数之和,而这两个数中的一个就是奇质数,另一个则是两个奇质数的积。”这个定理被世界数学界称为“陈氏定理”。
由于陈景润的贡献,人类距离哥德巴赫猜想的最后结果“1+1”仅有一步之遥了。但为了实现这最后的一步,也许还要历经一个漫长的探索过程。有许多数学家认为,要想证明“1+1”,必须通过创造新的数学方法,以往的路很可能都是走不通的。

热点内容
美发店认证 发布:2021-03-16 21:43:38 浏览:443
物业纠纷原因 发布:2021-03-16 21:42:46 浏览:474
全国著名不孕不育医院 发布:2021-03-16 21:42:24 浏览:679
知名明星确诊 发布:2021-03-16 21:42:04 浏览:14
ipad大专有用吗 发布:2021-03-16 21:40:58 浏览:670
公务员协议班值得吗 发布:2021-03-16 21:40:00 浏览:21
知名书店品牌 发布:2021-03-16 21:39:09 浏览:949
q雷授权码在哪里买 发布:2021-03-16 21:38:44 浏览:852
图书天猫转让 发布:2021-03-16 21:38:26 浏览:707
宝宝水杯品牌 发布:2021-03-16 21:35:56 浏览:837